CIAO Priority Task

Andrea Montani

Arpae Emilia-Romagna Servizio IdroMeteoClima, Bologna, Italy

COSMO GM

Jerusalem, 11-14 September 2017

COSMO Priority Task CIAO:

implementation of the Bechtold Convection scheme In COSMO model: deterministic And ensemble-mOde tests

Main goal:

To assess the sensitivity of COSMO forecast skill to the use of the newly implemented Bechtold convection scheme

Duration: 01.04.2017 - 31.08.2018

Project structure

COSMO-T: COSMO run performed with Tiedtke convection scheme COSMO-B: COSMO run performed with Bechtold convection scheme

SubTask1: benchmark of COSMO-B SubTask2: tests of COSMO-B in deterministic mode SubTask3: test of COSMO-B in ensemble mode SubTask4: COSMO-B and COSMO-T in ensemble mode

SubTask1: benchmark of COSMO-B

Perform a benchmark of the COSMO integrations in deterministic mode to assess and refine the technical details of COSMO-B....

• Deliverables: Identification of the optimal configuration of COSMO-B runs for the different set-ups.

• Start: 04/17 - End: 06/17

Bechtold scheme available since version 5.04b (at ECMWF, experiments performed with v5.04e-beta-corrected).

First results (see also next presentations):

- COSMO-B successfully implemented on different platforms
- COSMO-B as expensive as COSMO-T.

About namelists (and docu)

&PHYCTL

.

```
itype_conv=2, \leftarrow with "2" the Bechtold scheme is chosen
icpl_aero_conv=1,
icapdcycl=3,
```

```
New namelist switches:
```

icapdcycl

0

=0 no CAPE diurnal cycle correction (IFS default prior to cy40r1, i.e. 2013-11-19)

- =1 CAPE surface buoyancy flux (intermediate testing option)
- =2 CAPE subcloud CAPE (IFS default starting with cy40r1)
- =3 Apply CAPE modification of (2) over land only, with additional restriction to the tropics

More on namelists

• /TUNING/

a

For Tiedtke-Bechtold, the following new namelist variables have been implemented as tuning parameters:

Name	Description		Default:
tune_capdcfac_et	: fraction of CAPE di in the extratropics	iurnal cycle correction applied	0.0
tune_rhebc_land	: relative humidity th below cloud base or	reshold for onset of evaporation	0.75
tune_rhebc_ocean	: relative humidity the below cloud base of	reshold for onset of evaporation ver sea	0.85
tune_texc	: excess value for tem parcel ascent	perature used in test	0.125
tune_qexc	: excess fraction of gi test parcel ascent	rid-scale QV used in	0.0125
tune_rcucov	: convective area frac	etion	0.05
tune_entrorg	: entrainment parameter for deep convection valid at dx=20 km		0.001825
tune_rhebc_land_trop : relative humidity threshold for onset of evaporation below cloud base over land in the tropics			0.7
tune_rhebc_ocean_	trop: relative humidity below cloud base	threshold for onset of evaporation e over sea in the tropics	0.8
tune_rcucov_trop	: convective area	fraction in the tropics	0.05
agenzia prevenzione ambiente energia		No documentation	C

CONSORTIUM FOR SMALL SCALE MODELING

SubTask2: tests of COSMO-B in deterministic mode

For past cases of heavy precipitation, the performance of COSMO-B and COSMO-T will be investigated in deterministic mode....

"Standard" verification scores will be used

Novel spatial verification techniques will be also used

• **Deliverables**: for the investigated case studies, assessment of the skill of COSMO-B and COSMO-T in terms of the above-mentioned scores so as to have a detail description of the potential strengths and weaknesses of the individual convection schemes.

SubTask2: case studies over Serchio river basin

(~ 2000 km², Tuscany region)

Verification features

- Area: Serchio river basin (~ 2000 km^2).
- Measure: 24h area-averaged precipitation.
- Obs: about 50 non-GTS stations.
- Period: 31/01 07/02/2017.

Model features

- COSMO v5.04e-beta-corrected.
- 7km, 40ML (about 50 grid points in the basin).
- fc+132h, 00UTC runs only.
- COSMO-LEPS integration domain.
- BC/IC from ECMWF HRES.
- Soil from ICON-Regional.

Matteo Vasconi (Univ. Bologna)

24-h area-average precipitation (fcst 24-48h)

Matteo Vasconi (Univ. Bologna)

SubTask3: test of COSMO-B in ensemble mode

Implement cleps_10b:

- 10-member ensemble (7km, 40 ML,) starting at 00UTC,
- all members are run with COSMO-B.

• IC/BCs (+ soil conditions) are the same as those from members 11-20 of COSMO-LEPS (cleps 10t). Compare cleps_10b vs cleps_10t in terms of surface variables (e.g. TP, T2M, TD2M) over a long period as well as for case studies.

• Deliverables: Assessment of the individual skill of cleps_10b and cleps_10t for different verification times, computed over the full verification period as well as for particular cases.

variable:	6h cumulated precip (00-06, 06-12, UTC);	
period :	from 28 March to 31 May 2017 (~ 60 days);	
region:	Northern Italy;	
method:	nearest grid point; no-weighted fcst;	
obs:	non-GTS network (~ 1000 stations/day);	
fcst ranges: 0-6h, 6-12h,, 126-132h;		
thresholds: 1, 5, 10, 15, 25, 50 mm/12h;		
systems:	<pre>cleps_10b vs cleps_10t;</pre>	
scores:	ROC area, BSS, RPSS, Outliers,	

cleps_10b vs cleps_10t

- Brier Skill Score (BSS) is written as 1-BS/BS_{ref}. Sample climate is the reference system.
- BS measures the mean squared difference between forecast and observation in probability space.
- Consider three events: 6-hour precipitation exceeding 1, 5 and 15 mm.
- Ranked Probability Skill Score (RPSS): it is sort of BSS "cumulated" over all thresholds.
- RPSS is written as 1-RPS/RPS_{ref}. Sample climate is the reference system. RPS is the extension of the Brier Score to the multi-event situation.
- > Useful forecast systems for RPSS > 0.

- As for 6-hourly cumulated precipitation, **cleps_10t** slightly better than **cleps_10b** especially for rain/no-rain situations.
- Some negative impact by **cleps_10b** for short ranges.

Matteo Vasconi (Univ. Bologna)

SubTask4: COSMO-B and COSMO-T in ensemble mode

Implement cleps_20bt, :

- cleps_10b + members 1-10 of COSMO-LEPS;
- cleps_20bt has 20 members: 10 members run with Bechtold plus 10 members run with Tiedtke (no duplication of boundary conditions).

Compare **cleps_20bt** vs **COSMO-LEPS** in terms of surface variables (e.g. TP, T2M, TD2M) over a long period as well as for case studies .

The use of the Versus package is also envisaged...

• Deliverables: Assessment of the skill of cleps_20bt and COSMO-LEPS....

variable:	6h cumulated precip (00-06, 06-12, UTC);	
period :	from 28 March to 31 May 2017 (~ 60 days);	
region:	Northern Italy;	
method:	nearest grid point; no-weighted fcst;	
obs:	non-GTS network (~ 1000 stations/day);	
fcst ranges: 0-6h, 6-12h,, 126-132h;		
thresholds: 1, 5, 10, 15, 25, 50 mm/12h;		
systems:	<pre>cleps_20bt vs cosmo-leps;</pre>	
scores:	ROC area, BSS, RPSS, Outliers,	

cleps_20bt vs cosmo-leps

- > BSS is written as 1-BS/BS_{ref}. Sample climate is the reference system.
- ► BS measures the mean squared difference between forecast and observation in probability space.
- Consider three events: 6-hour precipitation exceeding 1, 5 and 15 mm.
- ▶ RPSS: BSS "cumulated" over all thresholds. RPSS is written as 1-RPS/RPS_{ref}. RPS is the extension of the Brier Score to the multi-event situation. Useful forecast systems for BSS > 0, RPSS > 0.

Open issues:

• More thorough tests once the official COSMO version with Bechtold scheme is available (v5.05).

- So far, "v5.04e_..." was used and we made "not clean" comparison between COSMO-T (5.03) and COSMO-B (5.04e_...).
- understand namelists switches (link to WG3a? ICON people?).
- look at vertical profile differences between COSMO-B and COSMO-T runs: which variables to store for diagnostics?
- verify also T2m, Td2m, uv_10m, gust?

Thanks for your attention

SubTask4: COSMO-B and COSMO-T in ensemble mode

COSMO runs in ensemble mode (hor. Res. 7 km, 40 ml, 132 fcst range) with the Bechtold scheme; 10 members are run with the same IC/BCs as members 1-10 of operational COSMO-LEPS (all members use Tiedtke scheme)

Verification over the peridod 28/3 - end of May for the 10-member ensemble

Confronto skill 10b vs 10t (cioè primi 10 mebri di COSMO-LEPS

Verification of the new ensemble system so generated: 20 membri: 10 girati con lo schema di Bechtold + 10 girati con lo schema di Tiedtke (quello attualmente in uso in COSMO-LEPS): NB *stesse ic e bc di COSMO-LEPS*

Confronto tra fc skill del nuovo sistema e quella di COSMO-LEPS su casi di precipitazione sui 2 mesi di verifica

SubTask1: benchmark of COSMO-B

Perform a benchmark of the COSMO integrations in deterministic mode to assess and refine the technical details (cost of the runs, set-up to be implemented) of COSMO-B. The runs will be carried out over integration domains covering Central-Southern Europe and Italy, at the horizontal resolutions of about 7 and 5 km.

• Deliverables: identification of the optimal configuration of COSMO-B runs for the different set-ups.

Participating scientists: V. Garbero (ARPA-Pie), P. Mercogliano (CIRA), A. Montani (Arpae-SIMC), M. Alemanno (Comet)

• Start: 04/17 - End: 06/17

SubTask2: tests of COSMO-B in deterministic mode

Verification over the Serchio river basin (~ 2000 km²) in terms of areal average precipitation. About 70 non-GTS stations

Jkjkkjk

Jkkkj

About 1000 stations (non-GTS obs)

