

Status of the work on KENDA at Arpae SIMC

Chiara Marsigli, Virginia Poli, Thomas Gastaldo, Davide Cesari, Tiziana Paccagnella

Arpae SIMC

KENDA operational @ Arpae SIMC (CINECA)

- implemented on a Linux cluster at CINECA (516 nodes)
- 3 hourly cycles (soon going to 1-hourly cycles)
- COSMO run at 2.2 km, 65 levels, version 5.04d
- 20 members (soon going to 40)
- BCs from LETKF ensemble of COMET (3/6 or 6/9 h older)
- deterministic member: BCs from COSMO-5M (3-12h older)
- LHN on rain rate on Italian radar network
- SM and SST perturbation
- adap_loc (n=100)
- adap_rho=F adap_R=T; + RTPP
- ICs to COSMO-2I RUC run +18 h (8 runs per day)
- ICs to COSMO-2I long (+48h) (00 and 12 UTC)
- ICs to COSMO-IT-EPS (+48h) (00 UTC) (pre-ope)

KENDA (Kilometer-scale ENsemble Data Assimilation)

KENDA experimental (CINECA)

- 1-hourly cycles
- COSMO run at 2.2 km, 65 levels, version 5.04e
- 20 members
- BCs from LETKF ensemble of COMET
- deterministic member: BCs from COSMO-5M
- LHN on rain rate rom Italian radar network
- SM and SST perturbation
- Ih=80 lv_surf=0.075 lv_top=0.5 (adap_loc=F)
- radar: h_loc=16 v_loc=0.3
- adap_rho=T + RTPS

KENDA (Kilometer-scale ENsemble Data Assimilation)

Experiments: set-up of the hourly cycle

- climatological B-matrix
- assimilation of all observations (conv + radar) only in the 15 minutes closest to the analysis time
- hloc vloc for radar

CASE STUDY

03/02/2017 06 UTC -07/02/2017 00 UTC

Some statistical outcomes

Assimilated observations ~3 10⁶ Rejected observations ~0.0006%

Verification of forecasted rainfall fields during the assimilation cycle

3-hourly accumulated precipitation – 03/02/2017 21 UTC

3-hourly accumulated precipitation – 05/02/2017 12 UTC

Boxplots of 3-hourly accumulated precipitation over the event

Evaluation of the precipitations with SAL

Experiments: shorter assimilation cycles

• 60 min - 30 min - 15 min

Experiments: shorter assimilation cycles

Experiments: shorter assimilation cycles

KENDA ICs for COSMO-IT-EPS ensemble

- The analyses obtained with KENDA are used as Initial Conditions for the COSMO-IT-EPS ensemble (2.2 km over Italy)
- Experiments have been performed at ECMWF

Hourly precipitation, area average (land only)

CTRL

CTRL + IC from LETKF

10 October 2015

Spectra of the perturbations (T)

CTRL

CTRL + IC from LETKF

28 October 2015

Spectra of the perturbations (T)

Concluding remarks

- If the radar reflectivity underestimates the rain, this has an effect on the assimilation
- Difficult to select the setup on the basis of few experiments (inflation, localisation, ...)
- Suggestion of a good impact of considering only the observations of the last 15 min
- COSMO software?

