

I. Advances in Rfdbk Rfdbk for the COSMO Test Suite at ECMWF Н.

Felix Fundel

Deutscher Wetterdienst

FE 15 – Predictability & Verification

Tel.:+49 (69) 8062 2422

Email: Felix.Fundel@dwd.de

Felix Fundel

- I. Recent Rfdbk developments
 - I. What is Rfdbk (not)
 - Recent developements Ш.
 - III. Status at DWD
 - IV. Conlusions after ~2 years
 - II. Rfdbk verification for COSMO Test Suite at ECMWF
 - I. Workflow
 - Requirements (Test Suite) П.
 - III. (Requirements (Common Plots))
 - IV. Final Products
 - V. Benefits

Package allowing to work with Feedback File content in R

- Load file content (partially, parallel)
- Basic verification scores (det. & EPS) implemented
- Some convenience functions like data adjustment, re-labeling, binning etc.

Rfdbk exploits functionality of R data.table format

- Handle huge data tables efficiently
- Concise syntax allowing to apply functions on sub-categories
- Straight forward to build a verification upon

Rfdbk is no verification package

• However, it helps producing results in a view lines of R code

Rfdbk Package

- No recent modifications
- More efficient implementation of loading radar information is planned (so far loading filtered data is not possible)

Rfdbk based verification

- Verification is now done for the full set of observations, as initially planned (especially most SYNOP observations were not contained in the beginning)
- Additionally aircraft measurements are used for verification & monitoring
- Verification of "hindcast" mode made possible
- Cross model verification (e.g. COSMO vs. ICON)
- DIY verification allows DWD users to conveniently start their own verification job
- Many enhancements of the graphic, interactive representation of results

Felix Fundel

Models

Status at DWD

- 3 ICON global deterministic routines
- 3 ICON EU Nest deterministic routines
- 2 ICON global EPS
- 2 ICON EU Nest EPS
- 3 COSMO-DE deterministic routines
- 3 COSMO-DE-EPS ensemble routines
- IFS deterministic
- IFS EPS
- Experiments +

Observation systems

- SYNOP
- TEMP (radiosondes) ٠
- SATOB (AMV) ٠
- **GPSRO** (radio occultations) ٠
- SCATT (scatterometer) ٠
- AIREP (aircraft)
- PILOT (wind profiler)

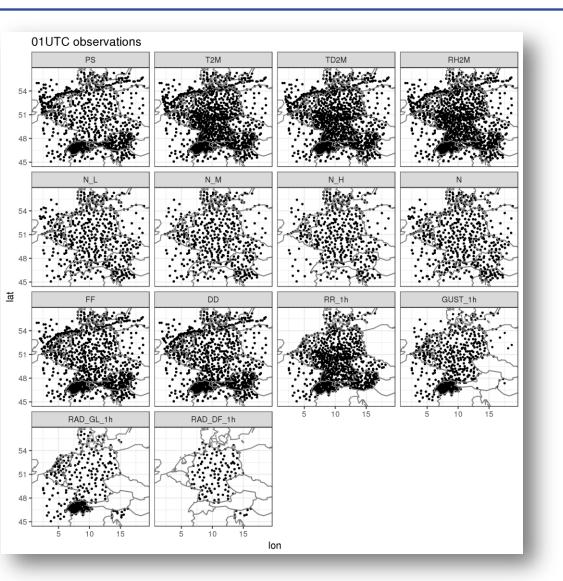
Methods

- Deterministic: continuous and categorical
- EPS: ensemble and probabilistic

Visualization

- I ead-time •
- Time series
- Station based

Aggregation


- Sub-domains
- Height bins or levels
- Lead-time to time of day conversion ٠ (",hindcast mode")

DW

Status at DWD

Deutscher Wetterdienst Wetter und Klima aus einer Hand

COSMO-DE surface observations

Example 2018-08-15

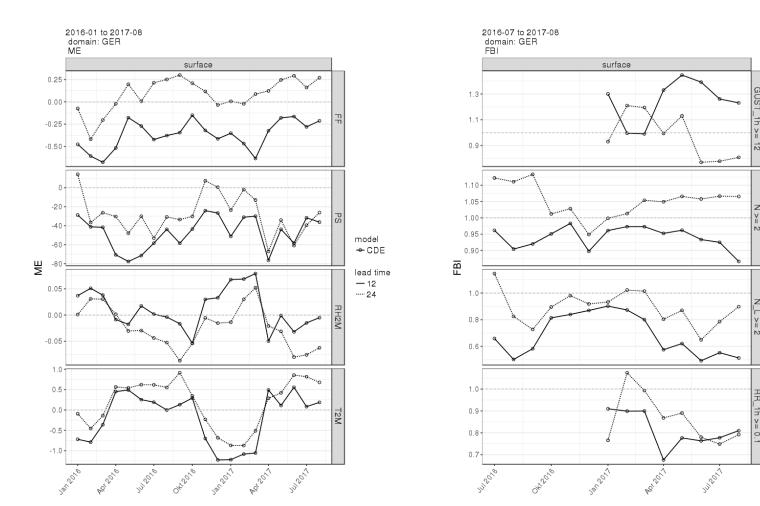
Additionally 3,6,12 hourly sums/maxima of RR and Gusts are available

COSMO-GM

COSMO-GM

Status at DWD

model


🔶 CDE

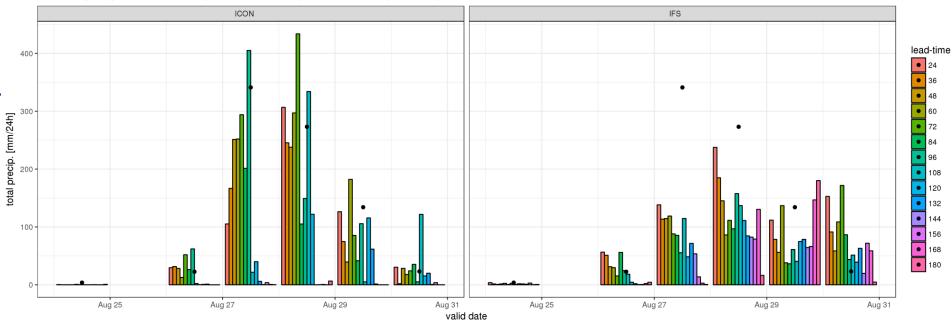
lead time

- 12

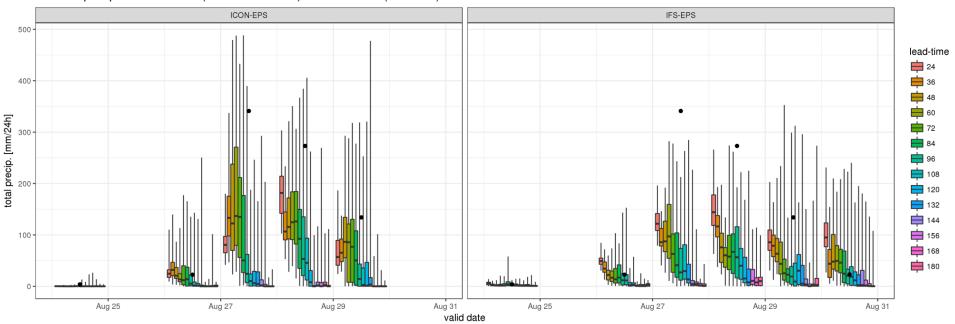
---- 24

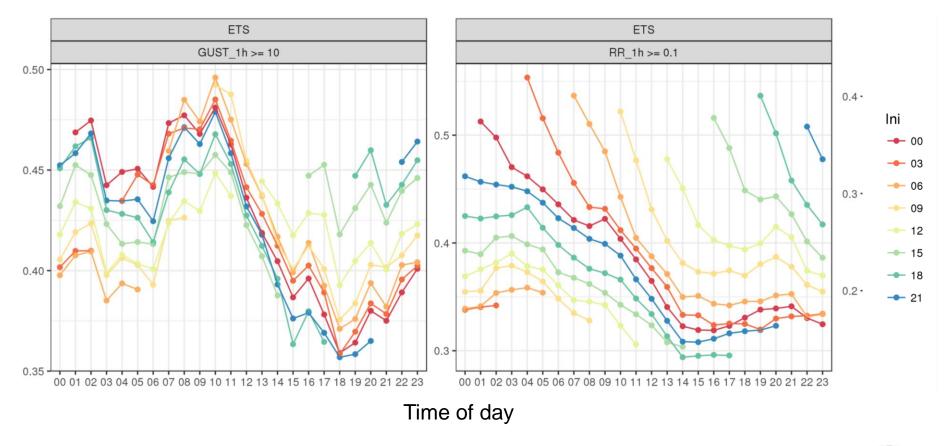
COSMO-DE 00 UTC monthly biases since 2016-01

Rfdbk



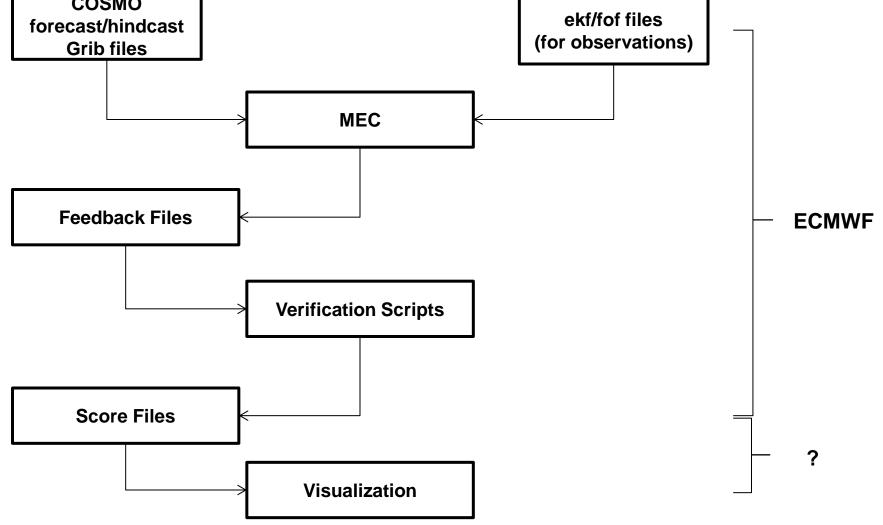
After ~2 years in use


- Feedback files have become a cornerstone in verification at DWD
- Rfdbk has shown to be a stable interface for R
- The verification built on Rfdbk is extensive with rather little amount of code
- The concise code allows a quick implementation of new features
- Users (at DWD) can start their own verification task conveniently via app
- The combination of feedback files and R allowed for many verification tasks aside of the routine verification...



24h total precipitation forecasts (12 UTC - 12 UTC) for HOUSTON (id: 72243)

COSMO-DE verification for Germany 2017/03 – 2017/08



II. Rfdbk for the COSMO Test Suite at ECMWF

COSMO

Wetter und Klima aus einer Hand

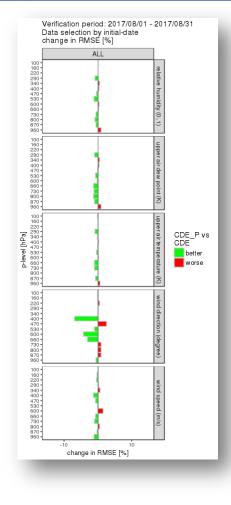
- MEC (EPS and det. version) needs to be installed at ECMWF
 - Already running with IFS forecasts
 - Some modifications to run with the COSMO model (0.1 FTE)
- Observations need to be provided
 - Feedback files with observations (ekf, fof) could be provided for the COSMO test suite periods (0.1 FTE)
- Rfdbk needs to be installed
 - R with most of the required packages is available as module on ecgate
 - Rfdbk installation was successful with user dwo
- Verification scripts using Rfdbk have to be provided and maintained
 - First (DWD verification) scripts are on ecgate, no complications expected (0.1 FTE)
 - For R code development Rstudio is available on ecgate
- Visualization of score files produced at ECMWF
 - Open shiny-server installation would be required to mimic DWD visualization (0.1 FTE)
 - Maybe COMSO server would be an option?

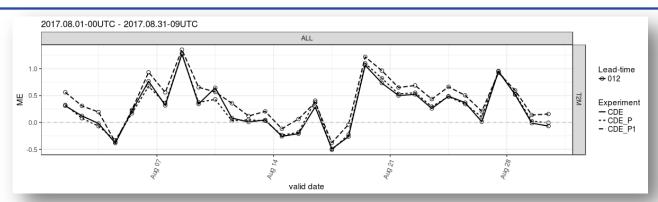
Scenario A (decentralized production of feedback files)

- MEC
 - Installation at each center individually
 - Requires larger support effort from DWD
- Observations need to be provided
 - Feedback files with observations (ekf, fof) for the common domain would have to be provided to the participating centers on a continuous basis
 - Maybe files from the DWD COSMO routine are suitable
- Verification suite setup
 - Verification should be performed centralized
 - Each participating center would have to send its feedback files
 - R, Rfdbk and a shiny-server installation would have to be installed at the responsible center
 - Verification scripts and visualization applications would have to be adapted

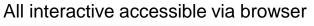
Scenario B (centralized production of feedback files)

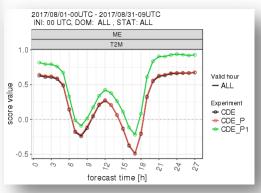
Individual runs (>5Gb per run (deterministic, 27h)) would have to be transferred to and collected at the site in charge. Probably not feasible.

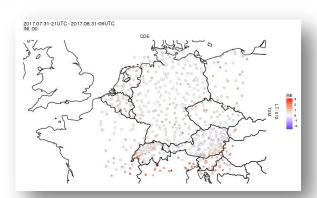



Deutscher Wetterdienst

Wetter und Klima aus einer Hand







Scores by lead-time Scores by valid date Scores by station Score cards Difference plots

In case DWD verification approach is adopted

- Runs fast
- Data adjustment between experiments
- Hindacst mode implemented
- Score cards and difference plots available
- Raw scores are exportable
- Manageable code (all R), relatively easy to implement new features, e.g. scores or visualization
- In case of open shiny server, all results are accessible to entire COSMO community

