

Status of the COSMO-POMPA PP

Pascal Spörri, Xavier Lapillonne

Timings POMPA Branch

COSMO-E Testcase

1x COSMO-E member 2 hour forecast Version: 15th May 2017

Performance Production Setup

CPU Performance

Double Precision

		Double Flecision		
		COSMO Fortran	COSMO C++ Dycore	
	Dynamics/Relaxation	280s	1.32 x 207s	
	Physics	80s	80s	
	Other	14s	12s	
	Total	374s	1.23x 309s	
Compute:	8 x Intel Xeon E5-2690	Sockets (96	x Haswell Cores)	

4x Intel Xeon E5-2690 Cores 1.8x

COSMO C++ Dycore: CPU → GPU

(4x Haswell Cores)

GPU Performance

	Double Precision		Single Precision
Dynamics/Relaxation	98s	1.6x	63s
Physics	38s	1.4x	27s
Other	34s		21s
Total	169s	1.5x	110s

Compute: 8x Intel Xeon E5-2690 Cores (8x Haswell Cores)
4x NVIDIA Tesla K80 Cards (8x Kepler Sockets)

I/O: 2x Intel Xeon E5-2690 Cores (2x Haswell Cores)

Total Speedup

1/0:

3.4x

CPU Double Precision (Fortran) GPU Single Precision (OpenACC Fortran & C++ Dycore)

Status of the Merge of the POMPA features

C++ Dynamical Core

- Integrated: Works in GPU/CPU mode
- Tested daily together with COSMO technical testsuite
- Changes are tested through pull requests
- Full developer documentation distributed to SCA

Physics (OpenACC)

- Ported schemes
 - Soil (terra), Radiation (not Iradav), Shallow convection, sso
- Ongoing
 - Turbulence, Microphysics
- Not Started yet
 - Tiedke convection, Flake
- Not considered in POMPA
 - Sea-ice, Bechtold convection

Other components

- Communication: GCL library is needed for efficient GPU/GPU communication
 - No progress yet (planned after COSMO GM)
- Assimilation
 - Nudging : ongoing
 - Latent Heat Nudging : not started
- Output and "glue code" (Imorg, organize_physics...): not started

Single Precision

- Only tested and operational (MCH and COSMO-LEPS) in the POMPA version
 Dynamics and Physics
- Possibly needs to be re-evaluated for the current official version of COSMO
- Data assimilation in single precision
 - Several tests with promoting internal variables to double
 - No success ⇒ may not be possible without significant change in the code

Documentation

Documentation

Build Documentation

- Covers STELLA, C++ Dycore and COSMO
- No extra build scripts needed
- Available in cosmo/ACC/README.md

C++ Dynamical Core Documentation

- Oriented towards developers
- Available in dycore/doc/Dycore

C++ Dycore Wrapper Documentation

- For C++ Dycore Maintainer
- Available in dycore/doc/Wrapper

• C++ Dycore Maintenance Guide

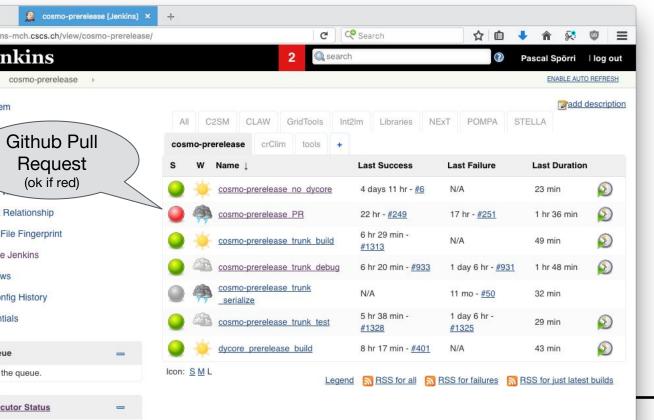
- For C++ Dycore Maintainer
- Available in dycore/doc/DycoreMaintenanceGuide

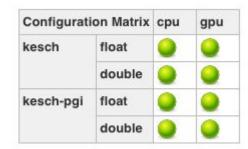
Available here: https://wiki.c2sm.ethz.ch/COSMO/CXXDynamicalCore

C++ Dycore Training Course

- Held in Langen, Germany as part of the COSMO/CLM/ART Training Course
- March 27 April 04, 2017
- 16 Participants (21 registered)
- Topics:
 - General setup of the code, testing
 - Configuration and compilation
 - Hands-on session on the DWD Cray
 - GPUs/Accelerators how and why
 - STELLA introduction
 - Extracting an intermediate computation

Material available here: https://wiki.c2sm.ethz.ch/COSMO/CXXDynamicalCore

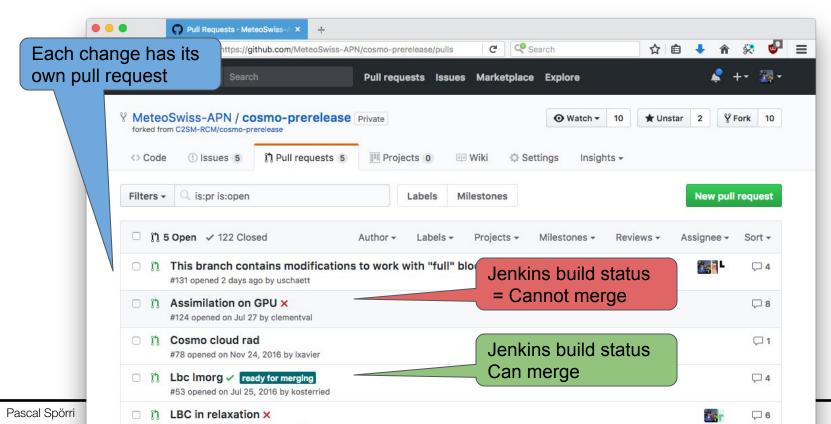




Working Mode

Daily Testing

Daily builds


- CPU and GPU
- Single and Double Precision
- Debug and Release
- C++ Dycore
- PGI and Cray

Testing

- CPU and GPU
- MeteoSwiss testlist
- DWD testlist
- C++ Dycore

Github Integration

Lessons Learned

- Github integration very important
 - Allows us to see the latest changes and regularly test them
 - Scalable for more collaborators

Thank you!

Kesch System Update

Production CUDA 7

GCC 4.9, MVAPICH 2.1, CCE 8.4.4, RHEL 6

	Timeloop	111.6233	Additional 14%
•	Dynamics	64.8235	
•	Physics	26.6754	
•	Init	1.6635	
•	Output	4.7423	

Updated System CUDA 8

GCC 5.4, MVAPICH 2.2, CCE 8.6.0, RHEL 7

•	Timeloop	95.4242
•	Dynamics	55.0604
•	Physics	21.8393
•	Init	1.8626
•	Output	4.4630

THE PER MINARY RESULTS - PRELIMINARY RESULTS - PRELIMINARY RESULTS - PRELIMINARY