

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Swiss Confederation

COSMO-E Status and new Developments

André Walser, Stephanie Westerhuis, and Marco Arpagaus MeteoSwiss, Zürich, Switzerland

COSMO General Meeting, 5.-8. September 2016

Outline

- Setup & implementation
- Recent work on SPPT
- Forecast quality
- Member selection for ICs and LBCs

COSMO-E operational setup

- 21 members (control and 20 perturbed runs)
- 2.2 km mesh-size, 60 levels
- two forecasts per day (00 and 12 UTC) up to +120h
- initial condition (perturbations): KENDA assimilation cycle
 - KENDA ensemble mean for control
 - KENDA members 1-20 (out of 40)
- lateral boundary condition (perturbations): IFS-ENS 18 & 06 UTC (i.e. 6h older LBCs):
 - IFS-ENS control for control
 - IFS-ENS members 1-20 (out of 50)
- model uncertainty: SPPT
- COSMO version 5.0+/GPU, single precision

Implementation & performance on Piz Kesch

- System: 12 computational nodes per rack (using 50% of rack space) with:
 - 8 dual GPU cards (NVIDIA Tesla K80)
 - 2 Intel Haswell (2.6GHZ, 12-core) CPUs
- COSMO-E Setup:
 - 21 members in parallel
 - 2 members per node (i.e. 1 member has 1 CPU and 8 GPUs)
- Performance: 97 min for +120h forecast

Schedule 00 UTC forecasts

- COSMO-E can only run after COSMO-1
- wait additional 30 minutes for new IFS-ENS LBCs
- \rightarrow (currently) long cut-off for KENDA 00/12 UTC analyses: 105 min.

SPPT: Stochastic Perturbation of Physical Tendencies

$$\frac{\partial X}{\partial t} = D^{X} + K^{X} + (1 + rand) \sum_{i=1}^{N} P_{i}^{X}$$
dynamics random pattern
local horizontal diffusion physics

Xprognostic variable (u, v, T, $q_v, q_c, q_i, q_r, q_s, q_g$) P_i^X physical parameterisation scheme i(turbulence, radiation, microphysics, shallow convection, ...)

MeteoSwiss copied and adapted from Shutts

SPPT: Generation of random pattern

copied and adapted from Torrisi

random pattern (1+rand) "RAPA"

8

Random pattern (RAPA)

COSMO-E ENSEMBLE_FORECAST Random pattern for SPPT Tue 15 Mar 2016 00UTC 12.03.2016 12UTC +60h

Work on SPPT since last COSMO GM and findings

- investigated excessive precipitation amounts in some members
- solution for temperature anomaly problem

Excessive precipitation due to SPPT setup

- itype_qxpert_rn != 2 can lead to unrealistically high precipitation amounts if the random pattern has a small value during a precipitation event
- all available qx tendencies must be perturbed with the same random pattern to be physically consistent
 → use itype_qxpert_rn=2! (if using qr, qs, qg)

Temperature anomaly problem

- 5th order advection scheme can produce temperature anomalies
- usually mitigated by physics and targeted diffusion
- however, if physics tendencies are significantly reduced by SPPT, temperature anomalies can become significant: cold/warm pools and even model crashes
- new switch *ltargetdiff_mask* to switch off SPPT (for the next time step) where targeted diffusion is active
- allows to use SPPT again down to the lowest model level

Temperature anomaly problem

• Main code changes:

```
hori_diffusion.f90:
DO l=1, nmbr_points
i = i_liste(l)
j = j_liste(l)
k = k_liste(l)
Tp(i,j,k) = T_new(l)
IF (ltargetdiff_mask) THEN
pertstoph_mask(i,j,k) = 0.0_wp
ENDIF
ENDO
```

```
src_stoch_physics.f90:
```

```
IF (Itargetdiff_mask) THEN
    pertstoph(i,j,k) = pertstoph(i,j,k) * pertstoph_mask(i,j,k) + 1.0_wp
    ! reset mask
    pertstoph_mask(i,j,k) = 1.0_wp
ELSE
```

done by O. Fuhrer and P. Spörri

Current SPPT setup

SPPT namelist switches for COSMO-E, changes since last COSMO GM in red:

&EPSCTL itype_vtaper_rn=2, itype_qxpert_rn=2, itype_qxlim_rn=0, npattern_rn=1, hinc_rn=6, dlat_rn=5.0, dlon_rn=5.0, stdv_rn=1.0, range_rn=0.9, lgauss_rn=.TRUE., lhorint_rn=.TRUE., ltimeint_rn=.TRUE., ltargetdiff_mask=.TRUE.

COSMO-E forecast quality

- ensemble verification for March May 2016 for SYNOP stations
- comparison against COSMO-LEPS

COSMO-E vs. COSMO-LEPS

	COSMO-E	COSMO-LEPS
grid-spacing	2.2 km (0.02°)	7.0 km (0.0625°)
domain	Alps	Europe
forecast range	+120h	+132h
deep convection	explicit	Tiedtke convection scheme
subgrid-scale orographic drag	roughness length	SSO scheme & roughness length
initial conditions	KENDA	IFS-ENS + COSMO-EU soil
boundary conditions	IFS-ENS -6h	IFS-ENS 0 & -12h ('super-ensemble')
physics perturbations	SPPT	Parameter perturbations
availability (last product)	4h after analysis time (3:30h as soon as ECMWF provides LBCs earlier)	~10:15h after analysis time

TD2m, RPSS, MAM 2016

Thresholds: -15,-10,-5,0,5,10,15,20,25 degrees Celsius

COSMO-E clearly better than COSMO-LEPS

 but COSMO-E shows strange score in the short-range since we use KENDA Ics (T2m behaves similar but less pronounce)

Spread TD2m (example opr suite)

- spread in ICs smaller than 0.2 K in larger parts of Switzerland (!)
- uncertainty definitely much larger
- eager to get ICs from new KENDA setup (SPPT, soil moisture perturbations → see talk by Daniel)

Wind speed 10m, RPSS, MAM 2016

Thresholds: 2.5,5.0,7.5,10,15,20 m/s

- very bad, worse than climatological forecast (!)
- COSMO-E at least better than COSMO-LEPS

12h precipitation, RPSS, MAM 2016

Thresholds: 0.1,0.2,0.5,1,2,5,10,20,30,50mm

- skill until end of forecast range
- COSMO-E outperforms COSMO-LEPS for Swiss domain only

RPSS, 1h precipitation, MAM 2016

Thresholds: 0.1,0.2,0.5,1,2,5,10 mm

- COSMO-E shows skill until end of forecast range
- COSMO-E clearly outperforms COSMO-LEPS

MeteoSwiss

COSMO-E

COSMO-LEPS

Main feedbacks from forecasters

- COSMO-E often triggers convection over the Alps only and misses it over the Swiss plateau:
 - \rightarrow lack of convective precipitation
 - \rightarrow missed warnings for thunderstorms
 - \rightarrow in particular with weak synoptic forcing
- Example:

Forecast quality summary

- COSMO-E outperforms COSMO-LEPS in most variables despite the 6h older LBCs
- benefit more pronounced over Switzerland
- still underdispersive in the PBL, most severe in the shortrange: too small spread in the initial conditions
- very bad scores for wind speed (and gusts)
- problems in convection triggering without orographic forcing

Member selection for ICs and LBCs

- Work by Stephanie Westerhuis (master thesis)
- Reminder operational setup: the perturbed members just use members 1-20 of KENDA and IFS-ENS

Questions:

- Is it possible to increase the COSMO-E forecast quality by using a smarter selection?
- How big is the difference in forecast quality between using the 'best' and the 'worst' set of 20 perturbed members?

Many possible selections...

Pragmatic way out: take full ensemble as a proxy for the best possible selection (worst see later).

Problem: Multidimensionality (grid-points, variables)

- \rightarrow reduce phase space and «make» it one-dimensional
- → similar approach used as in COSMO-LEPS clustering: 3 variables: wind, temperature, humidity on 3 model levels (~850, 700, 500 hPa)

Tranformation to 1- dim. & standardisation

Standardisation

2 proxies for worst possible selection

- 'leftmost': left tail of PDF for QV (20 driest members)
- 'closest': closest to ensemble mean for U,V,T,QV

Sophisticated selection: clustering

complete-linkage hierarchical clustering, similar as in COSMO-LEPS:

- on COSMO-E model domain
- U,V,T,QV on 3 model levels (~500, 700, 850 hPa)
- lead-times +48h & +96h
- representative members (RMs)

Experiments for LBCs

- 19 forecasts (00 UTC) with strong synoptic forcing (21 March – 8 April 2015) for +120h
- Control + 50 perturbed members driven by IFS-ENS
- Analysis from KENDA members 1-40 (+1-10 for members 41-50)
- Ensemble verification against SYNOP stations for entire COSMO-E domain for 7 selection configurations for LBCs:
 - full: all 50 members
 - rand: first 20 IFS-ENS
 - clust_point: 20 RMs, point-wise standardisation
 - clust_area: 20 RMs, area-mean standardisation
 - clust_clima: 20 RMs, point-wise stand. using 30d
 - closest: 20 members with smallest distance to mean
 - leftest: 20 driest members

+ control

2m temperature, outliers

'full' best as expected, 3 clustering setups second and almost identical, than 'rand', 'leftest', 'closest' is worse

2m dew point temperature, outliers

10m wind speed, outliers

similar results, but differences smaller except 'full' and 'rand' hardly better than 'leftest'

2m temperature, spread/error

- 'clust' shows larger spread than 'full'! → tails 'overpopulated'
- 'rand' third, 'closest' clearly worst

2m dew point temp., spread/error

10m wind speed, spread/error

similar results, but differences smaller

10m wind speed, RPSS

'full' best as expected, 3 clustering setups, than 'rand', 'closest' clearly worse

12h total precipitation, RPSS

12h total precipitation, ROC curve

results confirmed by ROC, but differences small

Experiments for ICs

- 16 forecasts (00 UTC) weak synoptic forcing (3 18 June 2015) for +24h
- Control (KENDA analysis mean) + 40 perturbed members driven by IFS-ENS (1-40)
- Selections based on analyses
- Ensemble verification against SYNOP stations for entire COSMO-E domain for 7 selection configurations:
 - full: all 40 members
 - rand: first 20 KENDA members
 - **clust_point**: 20 RMs, point-wise standardisation
 - clust_area: 20 RMs, area-mean standardisation
 - clust_clima: 20 RMs, point-wise stand. using 30d
 - closest: 20 members with smallest distance to mean
 - Ieftest: 20 driest members

+ contro

Results

- Differences between selection methods much smaller and most of them insignificant
- Probably limited potential due to small (lack of) spread
- Largest impact seen for precipitation, but results ambiguous

Summary for member selection

- sophisticated member selection like clustering for LBCs can improve COSMO-E forecasts significantly
- clustering is able to increase the spread for near-surface variables (most welcome!) → probably main reason for better scores
- random member choice can result in significantly worse forecasts with bad luck, can be at least as worse than 'closest' in specific case
- benefit of better IC selection limited, at least for scores averaged over day 1 (may be different for the very short range)
- elapsed time for LBC selection might be an issue, in particular since we wait for the LBCs to start COSMO-E

Outlook

- Investigate impact of new KENDA setup (→ talk by Daniel) on COSMO-E forecast quality
- Impact of member selection methods on upper-level spread?
- Investigate problem in convection triggering and underestimation of strong winds
- continue work on model perturbations → see talk by Christina Klasa

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Swiss Confederation

MeteoSwiss

Operation Center 1 CH-8058 Zurich-Airport T +41 58 460 91 11 www.meteoswiss.ch

MeteoSvizzera

Via ai Monti 146 CH-6605 Locarno-Monti T +41 58 460 92 22 www.meteosvizzera.ch

MétéoSuisse

7bis, av. de la Paix CH-1211 Genève 2 T +41 58 460 98 88 www.meteosuisse.ch

MétéoSuisse

Chemin de l'Aérologie CH-1530 Payerne T +41 58 460 94 44 www.meteosuisse.ch

