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1. Motivation1. Motivation

Aim: assimilation of satellite data to improve weather forecast

in current global ICON-model :

● Infrared Atmospheric Sounding Interferometer (IASI):  3.6μm-15μm

● Advanced Microwave Sounding Unit (AMSU): 35μm-150μm 

Assimilation of satellite data, e.g. of 
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Images: Florian Prill

ICOsahedral Nonhydrostatic (ICON) model ICOsahedral Nonhydrostatic (ICON) model 
● global model
● horizonal resolution: 13km

● Operational since 2015
● G. Zängl et al.  
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no assimilation of satellite data yet 

COSMO
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Problem: satellite data are affected by clouds 

absorption of infrared radiation by cloud water 

1. Motivation1. Motivation
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1. Motivation1. Motivation

in operational global ICON-model :

assimilation of satellite data under clear-sky conditions:

IASI (3.6μm-15μm) : cloud detection after McNally&Watts (2006)
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1. Motivation1. Motivation

in operational global ICON-model :

assimilation of satellite data under clear-sky conditions:

IASI (3.6μm-15μm) : cloud detection after McNally&Watts (2006)

ICON COSMO

clouds clear sky

IASIsatellite

model

  

 ?

? ?
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Choice of satellite instrument:

● Spinning Enhanced Visible and Infrared Imager (SEVIRI) on MSG3

1. Motivation1. Motivation

● geostationary

● 12 spectral channels: 
  - 11 channels with 3km resolution
  -   1 visual channel with 1km resolution
  -   8 infrared channels 
  -   4 visual/near infrared - channels

● 15 minutes time resolution
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Assimilation:

●  local model COSMO + data assimilation with KENDA

1. Motivation1. Motivation
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Assimilation:

●  local model COSMO + data assimilation with KENDA

●  Implementation of DA of SEVIRI-data 
 (a)   no consideration of cloud information
 (b) with consideration of cloud information
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Assimilation:

●  local model COSMO + data assimilation with KENDA

●  Implementation of DA of SEVIRI-data 
 (a)   no consideration of cloud information
 (b) with consideration of cloud information

1. Motivation1. Motivation

ICON COSMO

clouds clear sky

IASIsatellite

model

  

 SEVIRI

all sky
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very first result: DA of SEVIRI-Daten without cloud information

SEVIRI-DA worse without cloud information

DA in water vapour channel 7,3μmsensitivity of SEVIRI

1. Motivation1. Motivation
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clouds ?

experimental SEVIRI brightness temperature (BT) in channel 7.3μm 

2. cloud detection2. cloud detection
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basic question:

cloud detection based on measured data

or

cloud detection based on the model

2. cloud detection2. cloud detection
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basic question:

cloud detection based on measured data
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cloud detection based on the model

disadvantage: technically more complex in operational application 
           (since usage of additional software product)

advantage: various methods already exist 
      (esp. for hyperspectral sounders)
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Harnisch et al., J. R. Meteorol. Soc. (2016):

model water content in atmosphere defines cloud existence

spatial segmentation in clear/cloudy areasliquid and ice water content in COSMO-model

2. cloud detection2. cloud detection

Axel Hutt – 9/2016
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2. cloud detection2. cloud detection
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If LWC+IWC > θ at spatial location: 
                           model first guess and observation BT are affected by clouds 

If LWC+IWC <= θ at spatial location: 
                           model first guess and observation BT are clear  

segmentation of Field Of Views (FOV) into clear and cloudy 
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2. cloud detection2. cloud detection
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Data from time period  May 16 – 23 (2014)

BT
lim

BT
lim

brightness temperature Bt
lim

 separates clear and cloudy BT
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2. cloud detection2. cloud detection
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Daten aus Zeitraum 16-23 Mai 2014

Bias (BC)
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2. cloud detection2. cloud detection
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impact of clouds on brightness temperature:

● average cloud impact C
a
 [K]

● average of cloud impact on observations and model first guess 

BT
lim

cloudy clear

C
a
=0C

a
>0
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impact of clouds on brightness temperature:

● average cloud impact C
a
 [K]

● average of cloud impact on observations and model first guess 

BT
lim

cloudy clear

C
a
=0C

a
>0C

fg
=max(0,BT

lim
-BT)

Cloud impact on first guess:
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impact of clouds on brightness temperature:

● average cloud impact C
a
 [K]

● average of cloud impact on observations and model first guess 
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C
a
=0C

a
>0C

fg
=max(0,BT

lim
-BT)

C
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=max(0,BT
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-(BT-BC))

Cloud impact on first guess:

Cloud impact on observations:
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impact of clouds on brightness temperature:

● average cloud impact C
a
 [K]

● average of cloud impact on observations and model first guess 

BT
lim

cloudy clear

C
a
=0C

a
>0C

fg
=max(0,BT

lim
-BT)

C
obs

=max(0,BT
lim

-(BT-BC))

Cloud impact on first guess:

Cloud impact on observations:

average cloud impact :

C
a
=(C

fg
+C

obs
)/2
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One maps one value of C
a
 

to each FOV
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2. cloud detection2. cloud detection
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One maps one value of C
a
 

to each FOV

binning all C
a
 values:

consider set of X=obs-first guess 
for each C

a
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2. cloud detection2. cloud detection
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One maps one value of C
a
 

to each FOV

binning all C
a
 values:

consider set of X=obs-first guess 
for each C

a

mean of {X}: bias 

variance of {X}: σ2 =σ
fg

2 + σ
obs

2 
observation error
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One maps one value of C
a
 

to each FOV

binning all C
a
 values:

consider set of X=obs-first guess 
for each C

a

mean of {X}: bias 

variance of {X}: σ2 =σ
fg

2 + σ
obs

2 
observation error

Y=X/σ(C
a
) : normal distributed ?
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2. cloud detection2. cloud detection
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new observation error

Data from time period  May 16-23 (2014)

bias
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2. cloud detection2. cloud detection
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skewness kurtosis
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2. cloud detection2. cloud detection
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cloud-dependent classification of BT improves statistics

Data from time period  May 16-23 (2014)
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3. next steps3. next steps
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● Implementation of new observation error in KENDA

improvement of forecast  ?
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● Implementation of new observation error in KENDA

improvement of forecast  ?

● Improvement of cloud analysis in COSMO: 
✗ cloud fraction 
✗ precipitation
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3. next steps3. next steps
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● Implementation of new observation error in KENDA

improvement of forecast  ?

● Improvement of cloud analysis in COSMO: 
✗ cloud fraction 
✗ precipitation
      

● comparison to cloud analysis based on observations, e.g.
✗ Nowcasting SAF product (Schomburg et al. (2015))
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Thank you for your attention

Collaboration partners:

● R. Faulwetter, C. Schraff, H. Reich, A. Rhodin, H. Anlauf, R. Potthast
(German Meteorological Service, Offenbach)

● Jason Otkin (University of Wisconsin-Madison)
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