Sensitivity of COSMO-LEPS forecast skill to the verification network: application to MesoVICT cases

Andrea Montani

Arpae Emilia-Romagna Servizio IdroMeteoClima, Bologna, Italy

COSMO WG5/INSPECT

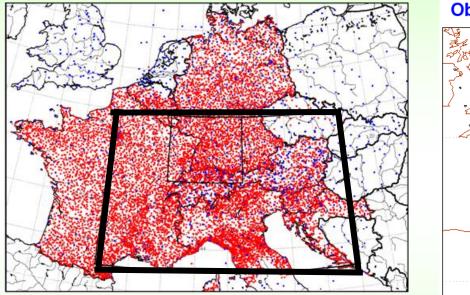
Outline

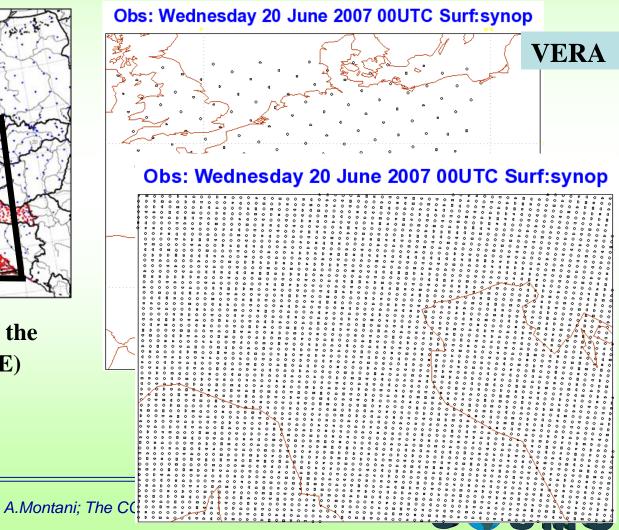
- Introduction
- Experimentation to the Core Case
- First results

Aims

Test the forecast skill of COSMO-LEPS in terms of total precipitation for different verification networks and different verification methods.

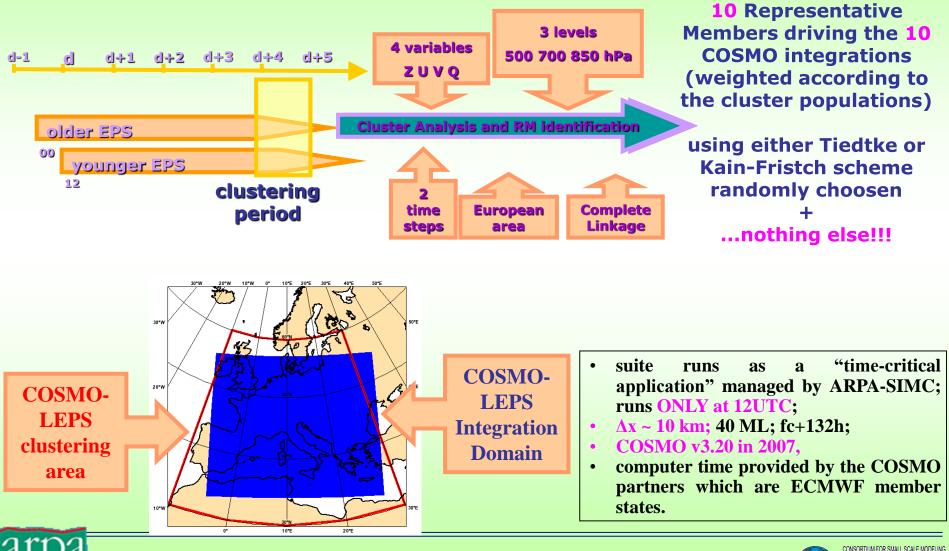
Networks/methods	Nearest grid point	Bilinear interpolation	Boxes (Dist)
VERA analysis	done		
JDC obs	done		


Understand the meaning of the differences in the verification scores

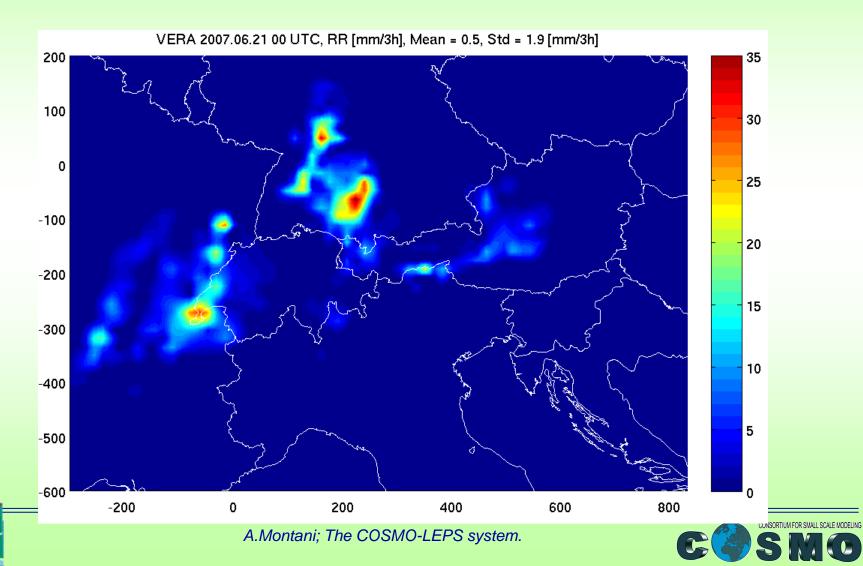


Verification networks covering 2007

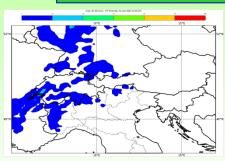
JDC (Joint DPhase-Cops) dataset: about 12000 obs – mean station distance ~ 12 km.VERA (Vienna Enhanced Resolution Analysis): gridded analysis at the resolution of 8 km.

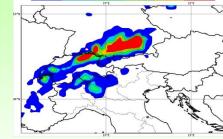


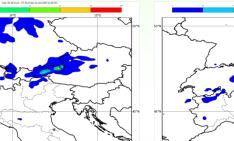
Verification is performed over the DPHASE area (43-50N, 2-18E)

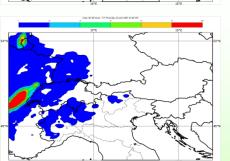

COSMO-LEPS suite @ ECMWF: IN 2007

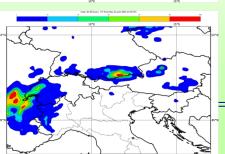
A.Montani

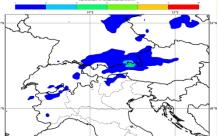

Core case of 20-22 June 2007:obs

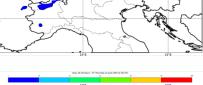

Convective events North of the Alps. tot_prec for the 3-hour period ending at 00UTC of 21 June 2007

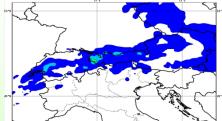


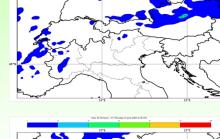

Core case: model

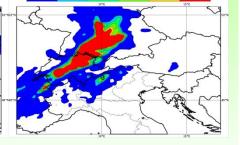

COSMO-LEPS starting at 12UTC of 19 June 2007, fc 30-36h. tot_prec for the 6-hour period ending at 00UTC of 21 June 2007

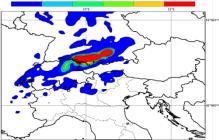


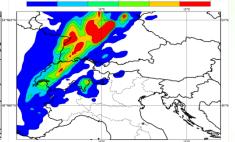


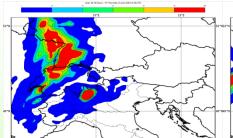


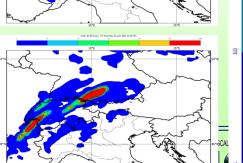


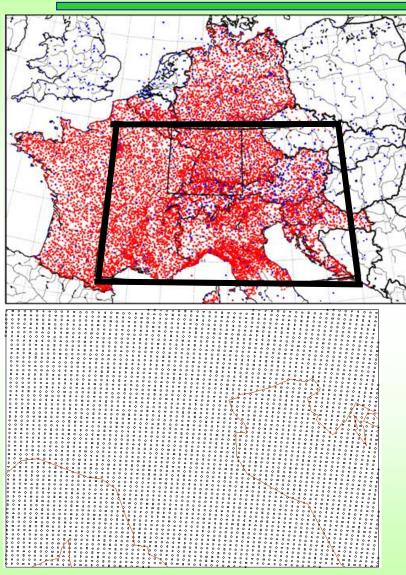




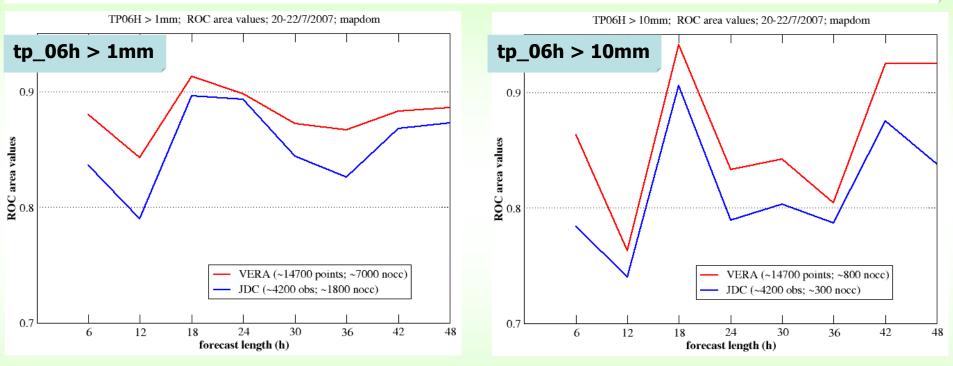








Objective verification of COSMO-LEPS

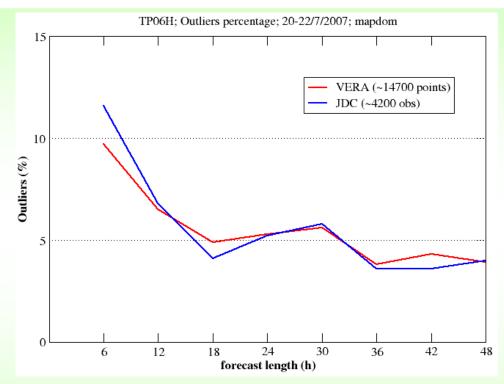

Main features:

variable: 6h cumulated precip (0-6, ..., 18-24 UTC); period: from 20 to 22 June 2007; region: 43-50N, 2-18E (D-PHASE area); method: nearest grid point; no-weighted fcst; **JDC or VERA;** obs: fcst ranges: 0-6h, 6-12h, ..., 42-48h; thresholds: 1, 5, 10, 15, 25, 50 mm/6h; system: COSMO-LEPS; ROC area, RPS, RPSS, Outliers, ... scores:

Probabilistic prediction of tp: ROC area

- > Area under the curve in the HIT rate vs FAR diagram; the higher, the better ...
- \succ Valuable forecast systems have ROC area values > 0.6.
- > Consider two events: 6-hour precipitation exceeding 1 mm and 10 mm.

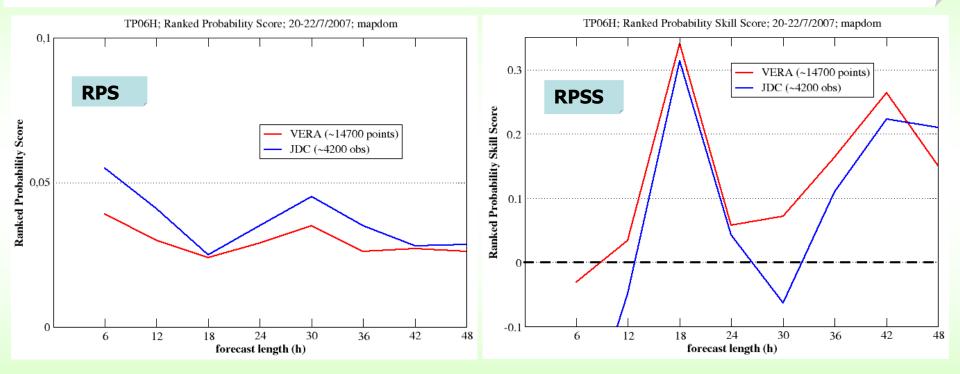
- Similar performance of the system with respect to the 2 verification networks.
- Higher skill when COSMO-LEPS is verified against **VERA** gridded analysis (different number of occurrences for the 2 networks).



Probabilistic prediction of tp: OUTLIERS

> How many times the analysis is out of the forecast interval spanned by the ensemble members.

 \succ ... the lower the better ...

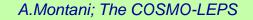

• Very similar skill of COSMO-LEPS with respect to either networks for all forecast ranges.

Probabilistic prediction of tp: RPS and RPSS

- BSS "cumulated" over all thresholds. RPSS is written as 1-RPS/RPS_{ref}. Sample climate is the reference system. RPS is the extension of the Brier Score to the multi-event situation.
- > RPS: the lower, the better.
- \succ Useful forecast systems for RPSS > 0

- Slightly higher skill when COSMO-LEPS is verified against VERA
- Higher skill of the system to predict TP occurring between 00 and 06UTC (for both networks)

Conclusions and open issues


- COSMO-LEPS forecast skill: similar scores using either VERA or JDC obs for verification network.
- Try to interpret the results.
- Need to assess also other verification methods (bilin, boxes).
- Look at all forecast ranges.
- Study other mesoVICT cases.

Thanks for your attention !

Recent news_1

• December 2015

➢ 30-day tests of COSMO-LEPS with ICON-EU soil fields: no noticeable impact on short-range forecast skill of TP, T2M, TD2M.

• 1 February 2016: suite upgrade

- > COSMO version update (5.01 \rightarrow 5.03); int2lm 2.0;
- Production and archive of 100 metre U and V wind component;
- Archive of P, T, U, V at model levels 35, 36, 37, 38, 39, 40.

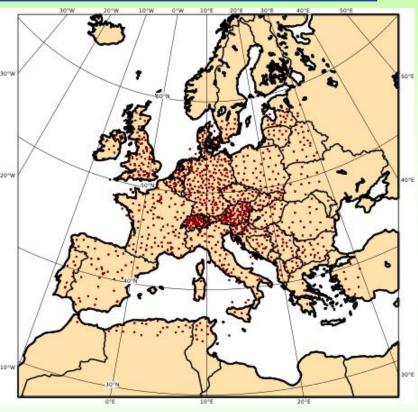
• 19 February 2016: int2lm

- ECMWF fields (from test dissemination) with longitudeOfFirstGridPoint = 335000 (instead of longitudeOfFirstGridPoint = -25000) made int2lm fail;
- ➤ a patch was applied to handle ECMWF GRIB1 files with longitudes greater than 180°.
- 25 February 2016: field production to ARPA-Liguria
 - Dissemination of COSMO-LEPS fields in GRIB2 format.

Recent news_2

• 6 June 2016: ECMWF upgrade

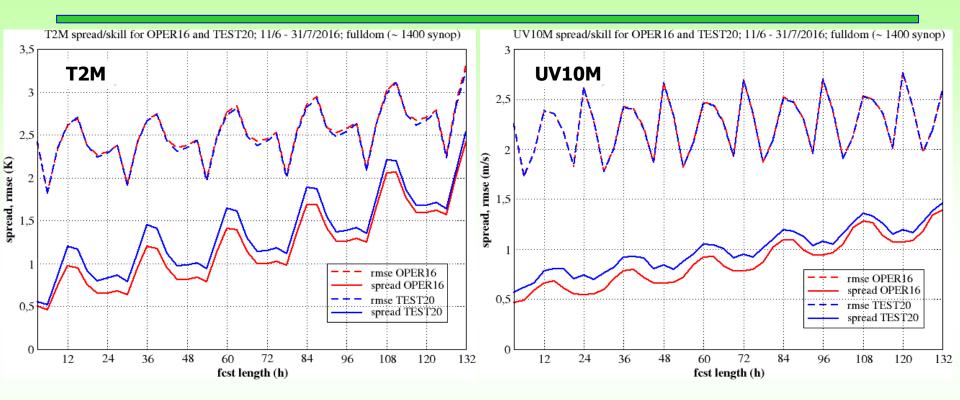
Change of processors on ECMWF super-computers (from IvyBridge to Broadwell) → change of geometry in COSMO and int2lm configurations; no impact on users;


• 11 June 2016: beginning of esuite

- Start of experimentation of COSMO-LEPS with 20 members in single precision (20_sp) and comparison against operational COSMO-LEPS (16 members in double precision, 16_dp).
 - Meteorological aspects
 - Computational aspects

Meteorological aspects

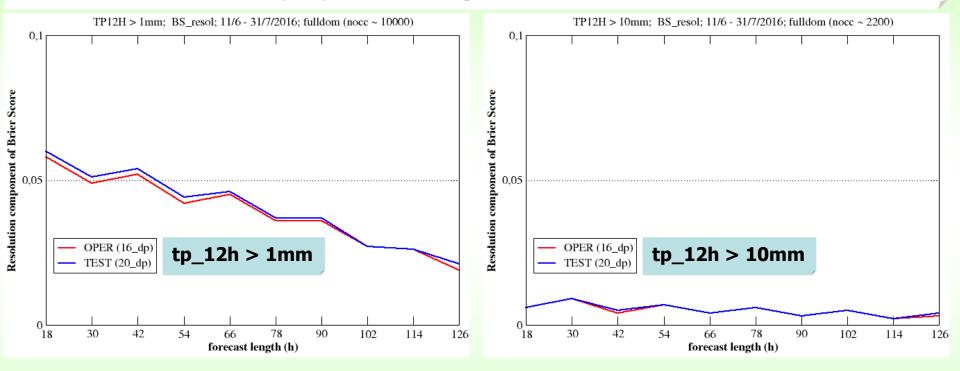
- COSMO v5.03: inter-comparison of **16_dp** (no SPPT) and **20_sp (with SPPT)**.
- Same soil initial conditions from COSMO-EU.
- Both the cluster analyses and the random choice of perturbation parameters are performed separately for 16dp and 20sp.
- 51 days of test (from 11/6 to 31/7/2016), starting at 00UTC.



Verification area: full domain (~ 1400 synop reports).

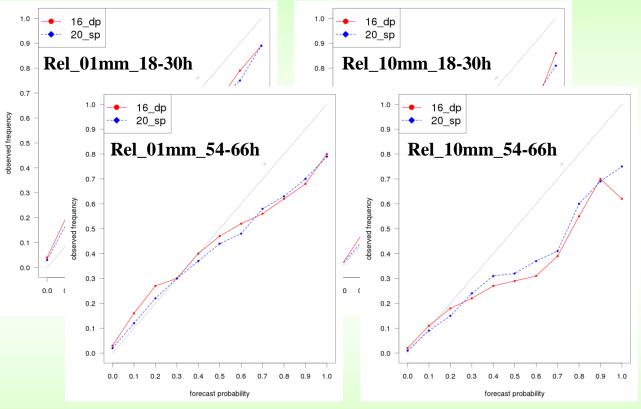
Spread/skill for T2M and UV10M

- more solid results with respect to those presented in June (51 days of experimentation).
- Larger spread for **20_sp** for both variables.
- In either cases, lack of spread in the short range.
- Limited impact (if any) on forecast skill of the ensemble mean.


It seems we are going in the right direction.

Probabilistic prediction of tp: Resolution

- Resolution component of the Brier Score: describes the ability of the system to distinguish among events in different categories; the higher, the better ...
- > Consider two events: 12-hour precipitation exceeding 1 mm and 10 mm.


- Slightly better performance by **20_sp** only for the lower threshold.
- Impact more evident in the short range.

Probabilistic prediction of tp: Reliability

Match between fcst probability and obs frequency for a certain event; the closer to the diagonal, the better
 Consider **four** events: 12-hour precipitation exceeding 1 and 10 mm at the ranges 18-30h and 54-66h.

- COSMO-LEPS overconfidence increases with both threshold and forecast range (fcst_prob > obs_freq) for both 16_dp and 20_sp.
- Not clear positive impact of enlarged ensemble size.

Computational aspects

#PBS -l EC_nodes=20
#PBS -l EC_total_tasks=720

Last year (with COSMO v5.1 and old ECMWF processors with different geometry) : the gain was highly variable from day to day (min: ~10%; max: ~50%), but on average → average saving of about 35%

THIS YEAR

	double precision	single precision
• Cost of 1 COSMO-LEPS run (ECMWF Billing Units)	3100	1600
• Elapsed time (sec)	960	500

→average saving of about 48%

20sp is cheaper than 16dp!

Open issue

Frequent (5-6 every day!) explosions of COSMO in single precision with SPPT.

- Plaster: when the task fails, COSMO is resubmitted with SPPT=.false. (and the task runs successfully).
- When we go operational, SPPT=.false.
- Once COSMO v5.5 is available, the explosion problems should be fixed.

COSMO-LEPS with SPPT: namelist

(from COSMO-E)

&RUNCTL leps =.TRUE., lsppt =.TRUE., /END	<pre>cat >! \$workingDir/INPUT_EPS << EONL &EPSCTL iepsmem=\$MEMBER, iepstot=\$LM_NL_EPSMEMBERS, iepstyp=203 imode_rn=0, itype_vtaper_rn=2, itype_qxpert_rn=2, itype_qxlim_rn=0, npattern_rn=1, hinc_rn=6,</pre>
	dlon_rn=5.0, stdv_rn=1.0,
	range_rn=0.9, lgauss_rn=.TRUE.,
	lhorint_rn=.TRUE.,
	ltimeint_rn=.TRUE., /END
	EONL

