

Implementation of ECMWF-IFS (Tiedtke-Bechtold) Cumulus Convection Scheme into COSMO

Jochen Förstner and Dmitrii Mironov

German Weather Service, Research and Development, FE14, Offenbach am Main, Germany

(jochen.foerstner@dwd.de, dmitrii.mironov@dwd.de)

COSMO General Meeting, 5–9 September 2016, Offenbach am Main, Germany

Outline

- Implementation of IFS cumulus convection scheme (ICON version) into COSMO
- Experiments for August 2015 (COSMO-EU, COSMO-DE)
- Verification results (upper air, near surface)
- Conclusions and outlook

... in the beginning...

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Tiedtke

Bechtold

valid: 12 FEB 2015 12 UTC k-index: 40 ... after 24h forecast time - Bechtold.resolution-bugfix_mtnmask

Günther Zängl: modified treatment of QI_conv TOT_PREC

Grid Scale Precipitation

Implementation of ECMWF-IFS Scheme into COSMO

- ECMWF-IFS scheme was implemented into COSMO-NWP version 5.03
- The scheme is now in the official COSMO code (version 5.05/5.04b); the COSMO code includes latest changes made for ICON (treatment of updraft vs. downdraft water-ice mixed phase; treatment of snow melting; interaction with the microphysics scheme as to the detrained rain and snow; diurnal cycle correction in mid-latitudes, not only in the tropics)
- Namelist setting: itype_conv=2 (plus: icapdcycl=3, icpl_aero_conv=1)

Main differences between ICON and COSMO implementation:

- Simplified treatment of aerosol number concentration: COSMO: two values – land: 200 cm⁻³ / sea: 50 cm⁻³ ICON: based on Tegen climatologies
- Convective transport of additional tracers is not yet implemented for COSMO (missing : copy to and from block layout for tracers)

Experiments

- Run from 25 July through 31 August 2015 (verification over 1-31.08.2015 and 1-10.08.2015)
- B.C. for COSMO-EU from global ICON
- COSMO-EU (Exp_10200) complete assimilation cycle, 00 UTC and 12 UTC forecasts (78 h)
- B.C. for COSMO-DE from COSMO-EU
- COSMO-DE complete assimilation cycle, 00 UTC, 12 UTC forecasts (27 h) and 03 UTC forecast (45 h) for renewable energy projects
- COSMO-EU verification (upper air, near surface)
- COSMO-DE verification (upper air, near surface, precipitation patterns for particular dates)

COSMO-EU: Upper Air Verification (01-31.08.2015, COSMO-EU Domain)

COSMO-EU: Upper Air Verification (01-31.08.2015, <u>COSMO-DE Domain</u>)

Plattime: 12.02.2018 11:50:51 NEZ @ lea01

Plattime: 12.02.2018 11:51:02 NEZ @ leaD1

Plattime: 12.02.2018 11:51:05 NEZ @ lea01

Forecast time: 006 hours Forecast time: 012 hours Forecast time: 018 hours Forecast time: 024 hours

Precipitation (precipitation above 0.1 mm (6h)⁻¹) [6.4% of all cases]

All stations

Forecast time: 060 hours Forecast time: 066 hours Forecast time: 072 hours

Forecast time: 054 hours

Model: LN2NO: 01.08.2015 00 UTC - 10.08.2015 00 UTC (exp. run 10200; Bechthold Schema) Model: Im2mo: D1.08.2015 00 UTC - 10.08.2015 00 UTC (ope. run LON: -30.00 - 63.47 LAT: 27.70 - 70.D0: nearest gridpoint) All stations

All stations

Forecast time: 006 hours Forecast time: 012 hours Forecast time: 018 hours Forecast time: 024 hours

Precipitation (precipitation above 2 mm (6h)⁻¹) [3.0% of all cases]

Model: Im2mo: D1.08.2015 00 UTC - 10.08.2015 00 UTC (ope. run LON: -30.00 - B3.47 LAT: 27.70 - 70.00: nearest gridpoint)

Forecast time: 054 hours Forecast time: 060 hours Forecast time: 066 hours Forecast time: 072 hours

Model: Im2mo: D1.08.2015 00 UTC - 10.08.2015 00 UTC (ope. run LON: -30.00 - 63.47 LAT: 27.70 - 70.00: nearest gridpoint)

COSMO-DE: Upper Air Verification (01-31.08.2015)

COSMO-DE: Surface Verification (01-31.08.2015, 00 UTC frsts)

COSMO-DE: Surface Verification (01-31.08.2015, 00 UTC frsts)

1 indicates perfect score

COSMO-DE Precipitation

COSMO-DE driven by COSMO-EU with IFS scheme (Exp_10218)

versus

COSMO-DE Routine (driven by COSMO-EU with Tiedtke scheme), COSMO-DE driven by ICON-EU (3dVar) (Exp_10076), COSMO-DE driven by ICON-EU (EDA) (Exp_10168)

- 1 August 2015 (00UTC), <u>html</u>
- 4 August 2015 (00UTC), <u>html</u>
- 7 August 2015 (00UTC), <u>html</u>

Conclusions and Outlook

- ECMWF-IFS (Tiedtke-Bechtold) cumulus convection is implemented into COSMO
- IFS scheme is included into the official COSMO code (version 5.05/5.04b)
- Results from test runs look reasonable; verification scores are neutral to slightly positive
- Drizzle problem (cf. ICON)
- IFS scheme may/should become a default option within COSMO (towards unified COSMO-ICON physics)

<u>Acknowledgements</u>: Michael Baldauf, Felix Fundel, Thomas Hanisch, Ulrich Pflüger, Bodo Ritter

COSMO General Meeting, 5–9 September 2016, Offenbach am Main, Germany