

Status report of

WG 2 – Numerical aspects

COSMO GM, DWD, Offenbach 5-8 Sept. 2016

Michael Baldauf (DWD)

with contributions from Guy deMorsier (MCH), Andreas Will, Jack Ogaja (Univ. Cottbus)

Reformulated divergence damping coeff. in new fast waves solver (III)

M. Baldauf (DWD)

Problem: bug identified: missing metric factor

Solution:

again a correction of the slope dependent reduction of the divergence damping coefficient (*Baldauf, 2013, COSMO TR*) in a staggered grid.

 \rightarrow has cured all known model crashes occuring in the past, for which the divergence damping was responsible...

... and cures the following new model crashes occuring with COSMO 5.3, too:

- COSMO-DE ,20.02.16, 12 UTC, 21.02.16, 00 and 12 UTC' (Exp. by Klaus Stephan)
- COSMO-IT (10km) at ,09.01.2016' (reported by Lucio Torrisi)
- KENDA NUMEX-Exp. 929w COSMO-DE at '17.09.2015, around 13 UTC (reported by Christoph Schraff, Hendrik Reich)

 \rightarrow in operations at DWD since 02 June 2016

Bug identified: missing metric correction term and now ... divdamp_slope = 1 is possible!

Divergence damping coefficient α_{div} over steep terrain (example: Alpine region) New (5.4) **COSMO 5.3**

COSMO-1 Keywords

O

G. deMorsier (MeteoCH)

- Convection-resolving deterministic forecasts
- Initial conditions (ICs) from Nudging (later LETKF)
- Lateral Boundary Conditions from IFS-HRES not COSMO-7
- More vertical levels (80, COSMO-2 has 60; SLEVE-type)
- Larger domain (about 25% but same lead-time as COSMO-2)
- □ No parameterised shallow convection (results of Turb-i-Sim)
- No Sub-grid Scale Orographic drag (assumed to be resolved)
- **Different** wind gusts parameterisation (10 to 20% reduction)
- □ External parameters (higher resolution and better quality!)
- FLake (soon)

C Summary

- COSMO-1 is operational since 31.03.2016
- Successful Co-design of Software, Hardware and Workflow which can solve a 40x larger problem with COSMO-E & LETKF
- Finalist for Swiss ICT Award 2016
- Seasonal verification benchmarks mostly attained: COSMO-1 is at least as good as COSMO-2 and will hence replace COSMO-2 which will be switched off by the end of Sep 2016.

Outlook

- Further development of **Data Assimilation at 1.1km**
- Improvements through better choices for namelist parameters (see CALMO Priority Project)
- Latest soil and/or turbulence parametrization

Higher order discretization

A. Will, J. Ogaja (BTU Cottbus)

Status

- Large improvement in efficiency done! In the comparison advS4-P4 / advUP5-P2: advection ~10%, fast waves ~3% more expensive. \rightarrow without artificial diffusion, the costs are roughly the same!
- Dissertation J. Ogaja is available. ۲
- Summerly precipitation dry bias is still not solved. ۲
- Model crash COSMO-DE (20.06.2013) ۲

Plans:

- Deliver the revised source code COSMO 5.00 hos2 for preparing it for the (next?) official COSMO version.
- Deliver final reports on the results obtained for the COSMO-EU and ۲ COSMO-DE configuration.

Adaptive time step

A. Smalla, T. Reinhard (DWD)

Todo:

- existing work must be migrated from COSMO 4.26 to current version
- MPI-parallelisation still needed
- Treatment of parameterisations with different time steps (e.g. convection)

Due to the work load invested for the change from GME to ICON at MetBW, \rightarrow implementation of the adaptive time step into the next COSMO 5.5 version is less probable.

Kaas (2008)-conserving extension of the Semi-Lagrangian Advection

G. deMorsier (MeteoCH)

(Work initiated at EMPA (ETH) has now moved to MeteoCH)

Improved Bott-scheme

W. Schneider (Bonn)

promises to give up the Strang splitting

PP CDIC – Status report

COSMO GM, DWD, Offenbach 5-8 Sept. 2016

Michael Baldauf (DWD)

with contributions from Günther Zängl, Florian Prill, Daniel Reinert (DWD), Rodica Dumitrache, Amalia Iriza (NMA), Marina Shatunova (RHM), Guy deMorsier (MCH)

Task 1. Good performance on a standard set of idealized test cases

1.	Advection test with nonlinear dynamics (Schär et al. (2002))	NN	?!
2.	Atmosphere at rest (Zängl et. al (2004) MetZ)	Barbu/Dumitrache/Iriza	×
3.	Cold bubble (Straka et al. (1993)) (unstationary density flow)	Barbu/Dumitrache/Iriza	*
4.	Mountain flow tests (stationary, orographic flows)		
4.1	Schaer et al. (2002), section 5b	Baldauf	*
4.2	Bonaventura (2000) JCP	"	1
4.3	3D-case (dry) Schmidli (?)	"	1
5.	Linear Gravity waves (Baldauf, Brdar (2013))	Baldauf	×
6.	Warm bubble (Robert (1993), Giraldo (2008))	Wojcik	1
7.	Moist, warm bubble: Weisman, Klemp (1982) MWR	Wojcik	×
8.	Advection tests for tracer schemes (solid body rotation,)	Will (without FTE)	1

Overall assessment:

- volunteers for almost all tests have been found
- test cases are a bit behind schedule ← to get familiar with ICON is more difficult compared to COSMO mainly due to the unstructured grid (both code complexity and use of external grid files)

- All the tests use flat domains
- most of them are 2D slice (x-z) model tests
- and some of those use (double) periodic BCs \rightarrow torus grid

Problems in ICON fixed:

- Interpolation to regular latlon-grid for output for a ,torus-grid' (extension of subroutine gc2cc, cc2gc, thanks to *Florian Prill*)
- Choice of a usable torus-grid (*L. Linardakis, MPI-M*) for 2D slice (x-z-) simulations:

Test case 2: atmosphere at rest

R. Dumitrache, A. Iriza (NMA)

global model ICON with dx ~80 km, mountains at equator. w after 12 days for 15 or 30 vertical levels (equidistant) and with or without Smagorinski-diffusion

Test properties:

- dry Euler equations
- test of well-balancing
- reference solution trivial

Test case 3: cold bubble

- unstationary
- strongly nonlinear
- comparison with reference solution from paper

physical 3D diffusion is still missing!

ICON Idealized Test Cases

M. Baldauf (DWD)

Test case 4.1: linear flow over mountains

setup: Schär et al. (2002)

Orography:
$$h(x) = h_0 \cdot e^{-x^2/b^2} \cdot \cos^2 \pi \frac{x}{\lambda}$$

 h_0 =25m, b=5km, λ =4km u_0 =10m/s, N=0.01 1/s, T(z=0)=288K

analytic linear solution: *Baldauf, 2008, COSMO-NL* (uses almost no further simplifications, e.g. it is a fully compressible solution)

Test properties:

- test dry Euler equations without Coriolis terms
- stationary
- with orography \rightarrow test also metric terms
- small amplitude \rightarrow linear \rightarrow comparison with analytic solution possible

colors and black dotted lines: COSMO or ICON blue lines: analytic solution

colors and black dotted lines: COSMO or ICON blue lines: analytic solution

Summary for linear flow over mountains (Schär et al.) test

- In this low mountain test both models COSMO and ICON behave quite similar; with slight advantages for ICON.
- The overall agreement with the analytic solution is very good
 → metric terms are correctly implemented

Next steps

- agreement with analytic solution in the 3D case (test case 4.3)
- comparison of stability limits for very high/steep mountains

Test case 5: Linear gravity waves

test defined in *Baldauf, Brdar (2013)* QJRMS (similar to *Skamarock, Klemp (1994)* MWR)

M. Baldauf (DWD)

Test properties:

- test dry Euler equations
- unstationary
 - \rightarrow inspect time integr.
- no orography
- small amplitude
 → linear → comparison
 with analytic solution

Test setup 2:

small scale test with advection (U0=20 m/s) and without Coriolis force

In COSMO: now divergence damping is necessary

Inspect resolutions:	2km,	1km,	500m,	250m,	125m
dt (COSMO)	10s,	5s,	2.5s,	1.25s,	0.625s
dt (ICON)	6s,	3s,	1.5s,	0.75s,	0.375s

In the fo	llowing convergence study compare:				
COSMO): dx=grid mesh size, o	dt_small = dt/6			
ICON:	dx=length of triangle edge,	dt_small = dt/5			
for an equilateral triangle \sqrt{A} =dx * 0.658					

Convergence behaviour

Wetter

Large scale test without advection but with Coriolis force

ICON results: (colors and black dotted lines: ICON, blue lines: analytic sol.)

COSMO

T, COSMO, a=100km, f, ideal setup, dt var.

Convergence behaviour

ICON

T, ICON, f, dt var.

Summary for the linear wave test

- Test 1 (only fast waves): ICON shows nearly 2nd order convergence. COSMO shows nearly 2nd order only in T, but less in w \rightarrow w error is smaller in ICON for fine resolutions
- Test 2 (FW + advection):

ICON behaviour is similar to test 1. COSMO convergence order is slightly reduced for coarse resolutions ICON errors are a bit larger than in COSMO, for fine resolutions a bit smaller

Test 3 (FW + Coriolis):

both models show 2nd order convergence; but the errors are smaller in ICON

 \rightarrow This task is almost finished

Task 2. Ability to handle real-/semi-idealised cases reasonably well

M. Shatunova, G. Rivin (RHM), G. deMorsier (MCH)

Until now, only test cases defined:

- strong advective case: storm ,Elon', 9-10 Jan. 2015 (MeteoCH)
- Bora event: 6-8 Feb. 2012 (possibly also 19 Feb. 2016) (RHM)

Necessary next step:

bring ,limited area' mode of ICON into official version and distribute it.

Strong wind (Bora) in Novorossiysk

05.09.2016

with Vmax= 44 m/s > 150 km/h,

February 2012, Novorossiysk

Task 4: Identification of differences in dynamical core formulations and their assessment

Status:

Stability analysis (mixed von-Neumann/normal mode analysis, beyond those in *Zängl et al, 2015*) of the ICON dynamical core took place. Presentations at SciCADE 2015, Potsdam, and Gung-Ho meeting 2015, Exeter *(Baldauf).*

Plans:

investigate influence of the implicit divergence damping in the pressure gradient off-centering/extrapolation.

Example: influence of pressure gradient time-level averaging

$$\frac{u^{n+1*} - u^n}{\Delta t} = -U_0 \delta_x u^{n*} + c_p \Theta_0 \delta_x \left((1+\alpha)\pi'^n - \alpha \pi'^{n-1} \right)$$
 (analogous in corrector step)

... acts like a divergence damping (Klemp et al. (2007) MWR)

isothermal atmosphere, unstretched grid

Task 3. Scalability/Performance suitable for operations as well as for future supercomputing platforms

Nothing done yet

Task 5. Suitability of ICON dynamical core for other applications than NWP (climate, chemistry, ...) compared to the COSMO model

Until now only one volunteer to assess ICON-ART (Roshydromet). Volunteer(s) from CLM community are welcome, too!

