

WG6 Activities Summary

Massimo Milelli and WG6 colleagues

- Reporting
- Support activities
- ➢ Git/GitHub
- NWP Test Suite
- Future Tasks
- Announcements

Reporting

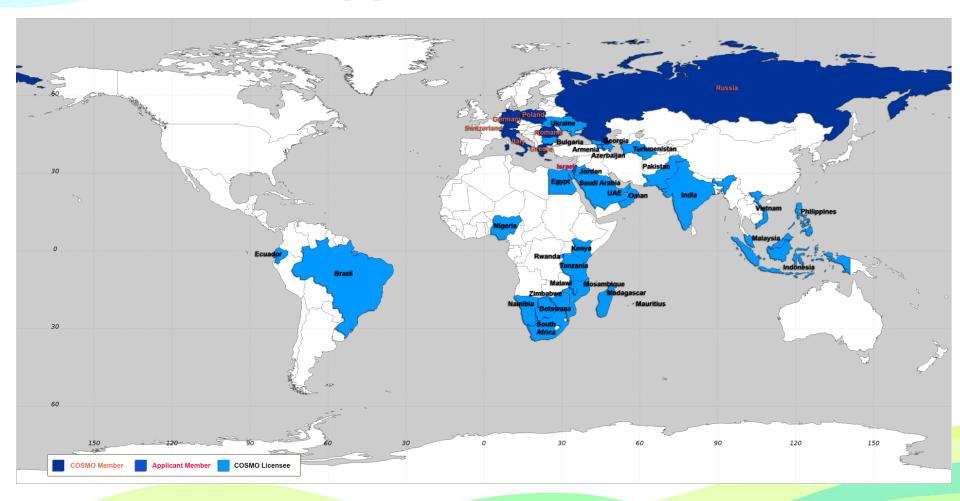
- Support activities
- ➢ Git/GitHub
- NWP Test Suite
- Future Tasks
- Announcements

Reporting

CONSORTIUM FOR SMALL SCALE MODELING

SM

- Newsletter: July 2016 (6 contributions)
- Technical Reports:
 - 1) RADAR_MIE_LM and RADAR_MIELIB Calculation of Radar Reflectivity from Model Output, Ulrich Blahak (TR28)
 - 2) A Stochastic Pattern Generator for ensemble applications, M. Tsyrulnikov and D. Gayfulin (TR29)
- NWP Test Suite report:
 - 1) v5.3 vs v5.1, September 2015
 - 2) v5.3 vs v5.4a, August 2016 (not yet released officially)
- Common plot activity



- Reporting
- Support activities
- ➢ Git/GitHub
- NWP Test Suite
- Future Tasks
- Announcements

Support activities

Support activities

- Increased number of countries
- COSMO/CLM/ART Training Course in Langen (February 2016)
- Support for the compilation of C++ Dycore version

- Reporting
- Support activities
- Git/GitHub
- NWP Test Suite
- Future Tasks
- Announcements

Git/GitHub

Short tutorial given by Kate Osterried and user-approach given by Uli S.

- Powerful tool for Source Code Management (or any other "many file" system)
- For standard use a few commands are sufficient
- The tool is usable and recommended
- Users can be invited by MCH to join the COSMO software community

- Reporting
- Support activities
- ➢ Git/GitHub
- NWP Test Suite
- Future Tasks
- Announcements

NWP Test Suite

[•] Proposals after the joint WG6/WG5 meeting:

- Writing of a guideline for the whole process
- Update of Versus to the latest version
- Inclusion of verification against model analysis
- Creation of a scorecard to simplify the reading of the results by the users (similar to ECMWF's one)

CONSORTIUM FOR SMALL SCALE MODELING

C

				Ano	ma	ly co	rrel	atio	n			F	RMS	err	or							
Domain P	arameter	Level			For	ecas	t da	y .				Fo	orec	ast (day							al width cally hig cally sig tically sig Cy38r1 tically sig cally sig
			1	2 3	4	5 (5 7	8	9 10) 1	2	3	4 5	6	7	8 9 1						
Polat	tive humidity	300hPa	4												۲							
heidi	uvenumuity	700 hPa																				
		100 hPa		4				Ц		▲	4	44	44			4 4						
Temr	nnerature 🛛 🗠	500 hPa		4		\square				A		4	•									
icinq	perdeare	850 hPa	•	+		\square	+	Ц		A	_	4	+									
pe		1000 hPa		4		\square									_		SV	mbol legend: for a	niven for	rerast	t sten	Ī
Wind	d	200 hPa	A						-	A	_		•					score difference, s: c	-		•	
		850 hPa		_		\square	+	\square	+		4											
		100 hPa		4 4			+	\vdash	-						•			Cy38r2 better than	Cy38r1 -	- stat	istica	ill)
Geop	potential	500 hPa 850 hPa	A	+	-		+	\square	-		*				-			Cy38r2 better than	Cy38r1 -	- stat	istica	lly
		1000 hPa	A	+	-	\vdash	+	\vdash	+		-	ť	•	1					_			
10 m	n wind	1000 IIPa					+	\vdash		A								Cy38r2 better than				
		300hPa		•					+		Ŧ			•	÷			Little difference bet	ween Cy3	38r2 a	nd Cy3	38r
Relat	tive humidity	700 hPa	Â			H	┢	H	-			+			•			Cy38r2 worse than (v38r1 –	not st	atistic	all
		swh	F	-																		
Wave	es	mwp		4			-	Η										Cy38r2 worse than	Cy38r1 –	stati	istica	lly
		100 hPa		•	۲	•												Cy38r2 worse than	Cy38r1 -	stati	istical	lly
tratropical Temr		500 hPa						Π														
rthern	perature	850 hPa																				
emisphere		1000 hPa	•	•						۲												
Wind	d	200 hPa		_						▲	▲											
wind	u	850 hPa																				
		100 hPa		4						_	-	_	_		4	14						
Geor	potential	500 hPa		4						_	▲	•	4									
Jocop	Procentian	850 hPa		4							*											
		1000 hPa																				

Offenbach, 18th COSMO General Meeting - Wednesday, September 7th 2016

NWP Test Suite

Shortage of Billing Units in ECMWF Special Project (SPITRASP).

In May-June 2016, ECMWF upgraded the processors of the super-computers. COSMO is about 1.5 more expensive on the new processors (we could not know this last year!). We have already spent 4.8 million BUs out of the 5.0 millions allocation for 2016.

On 24/8, we applied for extra-resources to test next model release.

On 5/9 we got the positive answer from ECMWF.

- Reporting
- Support activities
- ➢ Git/GitHub
- NWP Test Suite
- Future Tasks
- Announcements

- Special issue of the Newsletter: DWD research projects EWeLiNE and ORKA about the optimization of COSMO for wind and solar energy operations in Germany (Kristina Lundgren) *postponed*
- CORSO, COTEKINO and KENDA TR expected during this COSMO year
- Update of the web pages contents
- New PT under WG6 area: EDP² (Evaluation of dynamical core Parallel Phase)

- Reporting
- Support activities
- ➢ Git/GitHub
- NWP Test Suite
- Future Tasks
- Announcements

Announcements

- Anybody willing to add some post-processing to the COSMO software should inform TAG in advance. No rule can be decided a priori, but each case has to be analysed on its own and TAG has to address the developers towards the appropriate software
- There are problems with the main web server (Swiss mirror is up and working at the moment). The setting up a new one is in progress.

Thanks for your attention and for your work !

