

Final status

TL: I.Rozinkina, G.Rivin

Team:

E. Astakhova, D. Alferov, E.Avgoustoglou, J-M. Bettems, D.Blinov, P.Eckert, A.Montani, G.Rivin, I.Rozinkina, M.Shatunova, J.Helmert (RHMC, DWD, MS, ARPA-SIMC, HMC)

Goal:

• To transfer results of the PP CORSO to COSMO software, applications and know-how for be available for COSMO- community

The resources requested/spent: 1.0 FTE Period: 09.2014 - 08.2015 - 08.2016

Subtasks:

ST1: The guidance of the optimal domain's size selection for COSMO-1 for the regions with complex mountain relief

- 24.0

- **ST2:** T2m Implementation of algorithm of subgrid "h-correction" of (due to the differences between model's and real orograpy) based on COSMO T lapse rate forecasts
- **ST3:** Preparing of archives COSMO-Sochi-EPS applicable for research (as TIGGE LAM) aimed at improving COSMO EPS systems and available for community
- **ST4:** Preparing of guidelines for forecasters "The features of using and interpretation of the results of meso-scale modeling" based on Sochi experience

PT CORSO-A: ST1 CORSO-A: ST1

The guidance of the optimal domain's size selection for COSMO-1 for the mountain regions

G.Rivin, M.Shatunova, D.Blinov, (RHMC), J.Helmert (DWD) Motivation:

- -The runs of COSMO-1 for Sochi2014 demonstrated that forecast results depend on size and on site of domain of runs
- -The calculations of COSMO-1 are strong useful for meteosupport in mountain areas, but they are very computing expensive

Expected results:

The results of experiments with different COSMO-1 domains and proposals for choosing minimal useful domain size of COSMO-1 &

Practical recommends for COSMO-1 calculations in limited computing resources

PT CORSO-A: ST1:

Selected Domains

COSMO-Ru1 simulations performed for different domains from February 3 to March 31, 2014

The must part of observation data used for verification was available for region of competitions (Red)

D1: 300 x 300 km (90 000 / ~ 60 000 km**2) D2: 450 x 450 km (202 500 / ~ 120 000 km**2) D3: 450 x 650 km (292 500 / ~ 200 000 km**2) D4: 750 x 750 km^{GM} (562 500 / ~ 250 000 km**2)

What was performed:

- Several simulation domains were selected taking into account the prevailing direction of air mass transfer (using of GWT_27 weather type classification) and its transformation due to local conditions (e.g. orography effect)
- Simulations are made for the period 3-20 February, 2014
- Forecasts verification by VERSUS was made for the mentioned period
- Forecasts for different domains for heavy precipitation cases were investigated
- Forecasts evaluated for the central part of the domains onl

ST1:

24 h precipitation predicted from 18.02.2014, 00 UTC

PT CORSO-A:

Subjective complex conclusion about selection of size of domain

H

PT CORSO-A: ST1: COSMO Testing of precipitation forecasts for different domains

CONSORTUM FOR SMALL SCALE MODELING

PT CORSO-A: ST1: CORSO-A: COSMC Testing of T2m& TD2m forecasts for different

---ME_D1 ---ME_D2 ---ME_D3 ---RMSE_D1 ---RMSE_D2 ---RMSE_D3

COSMO GM Offenbach, 5 - 8 Sept. 2016

PT CORSO-A: ST1: COSMO

Selected Domains

Evaporation over water surface and produced cloudiness in COSMO1 can bigger be than in COSM07

D1: 300 x 300 km (90 000 / ~ 60 000 km**2) D2: 450 x 450 km (202 500 / ~ 120 000 km**2) D3: 450 x 650 km (292 500 / ~ 200 000 km**2) D4: 750 x 750 km^{GM} (562 500 / ~ 250 000 km**2)

Subjective complex conclusion about selection of size of domain

H

Subjective complex conclusion about selection of size of domain

H

Subjective complex conclusion about selection of size of domain

PT CORSO-A: ST1: COSMO

CONCLUSION:

Verification of the forecasts shown:

- for V10m : insignificant variations of the results for chosen domains
- for T2m-TD2m : some increasing of negative Bias and of RMSE for domains larger 400-600 km (due to included large sea surfaces-?)
- for precipitation: COSMO1 overestimates precipitation sum averaged for all period regardless of the domain size; in case of heavy precipitation both tendencies as under- as overestimation can be observed for different points
- The influence of borders can be indicated in fields of precipitations till 50 km Difference between forecasts can reach 10 mm for daily amount and 2-3 mm for hourly-accumulated precipitation
- Verification scores demonstrate possibility to use rather small simulation domain (300x300 grid points) for the forecasts with leadtime until 18 h without loss of forecast quality

<u>M. Shatunova.</u> <u>G. Rivin</u> "Optimal domain's size selection for 1.1 km resolution of nested COSMO models for the mountainous regions" COSMO NL (in Issue) COSMO GM Offenbach, 5 - 8 Sept. 2016

ST2: Implementation of algorithm of subgrid "h-correction" of T2m (due to the differences between model's and real heights) based on COSMO T lapse rate forecasts (hcorrection)

D.Blinov, I.Rozinkina (RHM), J-M.Bettems (MS), E.Avgoustoglou (EMS)

Expected results:

Adapted algorithm & software for the implementation into Fieldextra and into techniques of forming of COSMO meteogram tables, Results of tests for different weather conditions and points

What was performed:

At 2015-16:

The algorithm was formulated and included into FieldExtra Software (since 2016, FieldExtra 12.2.0, J-M Bettems)

The tests based FieldExtra tools performs for mountain stations of Russia and Greece

ST3: Preparing of archives COSMO-Sochi-EPS applicable for research aimed at improving COSMO EPS systems and available for community

ST3

3

E. Astakhova, D.Alferov (RHMC), A.Montani (ARPA-SIMC)

Goal:

Archives of 7 km and 2.2 km EPSs forecasts for the Sochi-2014 modeling area applicable for research aimed at improving COSMO EPS systems and available for community

PT CORSO-A: ST3 COSMO

Results:

- Archive of COSMO-EPS forecasts in TIGGE-LAM style for the period of Olympics/Paralympics (January 14,2014 – March 16, 2014 are prepared
- Web-tool to export forecasts and observations is developed
- A list of most interesting cases during Olympics/Paralympics is available
- ICs and BCs for high-resolution EPS available on demand

Two COSMO-EPS were developed in CORSO project

COSMO-S14-EPS – a "clone" of COSMO-LEPS moved to the Sochi region COSMO-Ru2-EPS – downscaling of COSMO-S14-EPS 10 members

Specification of CORSO Unified Archive for Sochi (follows TIGGE-LAM)

ST₃

•Data format:	WMO-GRIB2
•Period:	January 14,2014 – March 16, 2014
•Ensemble systems:	COSMO-S14-EPS, COSMO-Ru2-EPS
•Model runs:	2 per day (00 UTC, 12 UTC)
•Time step frequency	: 3h (cumulated parameters are not archived at step 0)
•Grid:	original model grid
•Parameters:	T 2m, Td 2m, U 10m, V 10m,
	gusts 10m, pmsl, 3-h accum prec
•Static fields:	orography, land-sea mask (are archived only once)

GRIB files for ensembles contain the following metadata: size of ensemble; ensemble member's number; type of forecast (perturbed/control) *CORSO archive is a part of FROST-2014 archive,* which additionally contains forecasts by 4 other EPSs: GLAMEPS (11km), HarmonEPS(2.5 km), NMMB-EPS(7 km),LAEF-EPS (11 km) 21

Web-tool to export gridded ensemble forecasts from the archive

ST3

From 2014-01-14 To 2014-03-16														
_														
elect :	forecast	origin a	nd initial	time										
	COSMO-S14-EPS		GLAMEPS		LAEF-EPS		NMMB-EPS		COSMO-Ru2-EPS		HarmonEPS			
0:00														
6:00	2						_							
2:00														
elect	all Clear	r.		l										
iccri	III Cica													
elect	ensemble	e membe	ers											
0	1	2	3	— 4	5	6	27	8	9	10	11	12	13	14
15	16	17	III 18	<mark> 19</mark>	20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54					
elect	all Clear	<u> </u>												
oreca	st Lead 7	Time Ihr	1											
0	1	2	3	4	5	6	17	8	9	10	11	12	13	14
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39	4 0	41	42	43	4 4
45	46	47	48	51	54	57	60	63	66	69	72			
elect	all Clean	<u> </u>												
				2000 C										
electi	meteorol	logical p	arameter	rs								10	10	
10 metre U wind component			10 metre V wind component				Wind Gusts at 10 m height, m/s							
Dew Point Temperature (at 2 m above the ground), K				Temperature (at 2 m above the ground), K				Land-sea mask						
Mean sea level pressure, Pa				Orography				Total precipitation, mm						
elect	all Clear	<u> </u>												
						_								
our e	mail:													

22 ---http://frost2014.meteoinfo.ru/forecast/exportgridforcs

DONSORTUM FOR SUBLE SCALE MODELING

SMO

H

PT CORSO-A: ST3

Web-tool to export observations from the automatic meteorological stations in the Sochi region

CONSORTUM FOR SUBLESCALE MODELING

SMO

E

Select stations					
Snowboard-1025	Freestyle-1080	Biathlon-1500	Biathlon-1400		
Biathlon Stadium	└── Ski Stadium	Nordic Combination-675	Nordic Combination-615		
Ski Jump-650	Ski Jump-800	Sledge-830	Sledge-700		
□ Krasnaya Poliana (Roshydromet)	C Kordon Laura (Roshydromet)	Gornaya Karusel-1500 (Roshydromet)	Gornaya Karusel-1000 (Roshydromet)		
🗌 Aibga (Roshydromet)	Solokh-Aul (Roshydromet)	Kichmai	Imeretinka (Roshydromet)		
Agrostation Sochi Roshydromet)	Kepsha (Roshydromet)	Lazarevskoye (Roshydro	met)		
RKHU-2 (2137m)	RKHU-3 (2043m)	RKHU-8 (1740m)	RKHU-4 (1580m)		
RKHU-7 (Finish, 980m)	Adler-AMSG	Magry (Roshydromet)	Helicopter Pad Roza-Khutor		
Lunnaya Polyana (Helicopter Pad)	Krasnaya Poliana-Verblude (Megafon)	Adler-Norluis (Megafon)) 🗌 SBT-Dacha (Megafon)		
Adler-Airport (Megafon) <u>Select all</u> <u>Clear</u>	SYNOP stations				
Select parameters					
Wind Speed	Wind Direction	Air Temperature	Dew Point Temperature		
Ground Temperature	Relative Humidity	Precipitation	Precipitation Intensity		
Atmospheric Pressure	Visibility	Cloud Base Height	Reflected Sort-Wave Irradiance		
Total irradiance Select all Clear					

http://frost2014.meteoinfo.ru/obs/export-observations-data

PT CORSO-A: ST3

A list of most interesting cases during the Olympics/Paralympics

CONSORTUM FOR STURE SCREE MODELING

Date	on competitions)	Behavior of models
February 7, 2014	Foehn	Underestimation of temperature by the most part of models
February 10-11, 2014	Precipitation dissipation	Precipitation predicted by the overwhelming majority of models but not observed actually
February 15, 2014	Wind gusts	Underestimation of maximum wind speed in Krasnaya Polyana (by 3.5-7 m/s) by the most part of models
February 16-17, 2014	Local cyclogenesis/Poor visibility (postponed competitions in biathlon and snowboard)	Not all forecasting systems performed well
February 18, 2014	Cold front/Precipitation	Accurate precipitation forecast by the majority of models
February 22, 2014	Foehn	Underestimation of air temperature (by 2.4-4.4°C) by the most part of models
March 11, 2014	Cold front/Temperature (postponed competitions in Alpine skiing)	Not so accurate forecast of maximum air temperature and diurnal variations
March 13, 2014	Weak slow process/Precipitation above 1500 m caused by "settling" of clouds	Inaccurate forecast of precipitation by the majority of models
March 16-17, 2014	Cold front/Wind gusts	Underestimation of wind speed by the most part of models

The CORSO and FROST-2014 archives are ready
The Web tools to export data are prepared
Various observation data are available

"COSMO-based ensemble forecasting for Sochi-2014 Olympics: archiving the results" <u>E. Astakhova, A.</u> <u>Montani, D. Kiktev, A. Smirnov :</u> COSMO News Letter No.

16, pp. 40-45 Welcome to the Sochi testbed!

PT CORSO-A: ST4

ST4: Preparing of guidelines for forecasters "The features of using and interpretation of the results of meso- scale modeling" *I.Rozinkina, (RHMC) P.Eckert (MS)*

Expected results:

Guidelines for forecasters –concerning the features of interpretation of High resolution NWP products **Motivation:**

The implementation, including interpretation of LAM HR products has some features in comparison with products of Global modeling. Some experience was obtained as result of feed-back from forecasters during Sochi2014 and trials

PT CORSO-A: ST4 CONTENTS

DRAFT

Recommendations to forecasters on the use of products of small scale LAM NWP

1	INTRODUCTION
2	The small scale (SS) NWP – why is feasible?
	HR LAM products:
3	Access to LAM products
3.1.	Features of access to LAM NWP products
3.1.1	Concepts for visualization of LAM NWP products
3.2.	Recommended basic products and the sequence of
	their analysis for montain and flat terrains
3.2.1.	Analysis of large-scale processes of synoptic (larger
	that 200) and alpha-meso (larger than 50-100
	km)scales
3.2.2.	Analysis of processes of beta- meso (about 20-100
3 2 3	km) scales
5.2.5	Meteograms
4	Features of interpretation of HR LAM products
4.1.1	Forecasting of weather phenomena and parameters
4.2.2.	Difficult model situations and mainly correction
4.2.3.	Forecasting for points
	General comments
5	Interpretation & Post processing
6	Some examples
7	Aspects for forecaster trainings
	Aspects for forecaster trainings

12

ONSORTUM FOR SMALL SCALE MODELING

. .

SI

2015

Availability of Results for COSMO:

ST1: "Optimal domain's size selection for 1.1 km resolution of nested COSMO models for the mountainous regions" <u>M.</u> <u>Shatunova, G. Rivin :</u> Prepared for COSMO NL

ST2: Software included into FieldExtra, 12.2.0.

ST3: "COSMO-based ensemble forecasting for Sochi-2014 Olympics: archiving the results" <u>E. Astakhova, A. Montani, D.</u> <u>Kiktev, A. Smirnov :</u> COSMO News Letter No. 16, pp. 40-45 <u>http://www2.cosmo-model.org/content/model/documentation/</u> <u>newsLetters/newsLetter16/cnl16_06.pdf</u> <u>http://frost2014.meteoinfo.ru/obs/export-observations-data,</u> <u>http://frost2014.meteoinfo.ru/forecast/exportgridforcs</u>

ST4: "Guidelines for forecasters of interpretation of LAM mesoscale NWP products" *I.Rozinkina, P.Eckert* (will be presented on COSMO-model.org till Feb 2017)

WG4

PT CORSO-A:

Thanks for your attention!

Thanks to: E. Astakhova and M.Shatunova for provided matters for presentation

