

Final report PT RC2 - revised cloud radiation coupling

Ulrich Blahak (DWD)

COSMO General Meeting, Wroclaw, 7.-10.9.2015

1

→ Priority Task (RC)2 (2014 – 2015)

green: done; orange: in progress; red: not yet started

- → UB (Ulrich Blahak), PK (Pavel Khain), HM (Harel Muskatel)
- → We had a 1-week workshop in Offenbach from 12.1. 16.1. to coordinate the work
- \rightarrow Upgrade test code to the newest COSMO version 5.1_beta (\rightarrow UB)
- → Getting familiar with the COSMO radiation scheme and with UB's test code together with the changes/ extentions contained herein $(\rightarrow PK, HM)$
- → Further revision of optical properties of ice hydrometeors (single scat. alb., asym. param.) based on a new parameterization of Fu et al. (2007) (> HM, UB)
- \rightarrow Review/ revise treatment of subgrid scale clouds in radiation (\rightarrow PK, HM)
 - \rightarrow E.g., decoupling of CLC diagnostic and radiation tuning; SGS clouds consistent to turbulence scheme?

Priority Task (RC)2 (2014 – 2015)

green: done; orange: in progress; red: not yet started

- → Reduce number of tuning parameters (→ PK, HM, UB)
 - \rightarrow 1) Find insensitive parameters by case studies and set to constant values.
 - \rightarrow 2) Physically based closures. Examples:
 - → Replace parameter *cloud_num* (number conc. of cloud drops) by a climatology. UB has developed a method for a similar parameter in the microphysics, based on Tegen et al. (1997) and Segal & Khain (2006), but not implemented in the radiation so far. Now it has been implemented also in the radiation.
 - Replace radgc_fact by a PDF-based closure. Would be a new development and not clear if possible.
- Case studies for different weather situations and different climates
- → Consultation / Collaboration with LMU Munich, group of Prof. Bernhard Mayer initiated

- Porting of our test code to COSMO version 5.1_beta
- → New ice particle optical properties for the 8 RG92 wavelength bands by sizedistribution-integration of single-particle single-wavelength scattering data (provided by Quiang Fu from University of Washington), with subsequent wavelength band averaging:
 - \rightarrow Extended validity range of fits out to D_{ge} = 600 µm (before: 140 µm), now suitable for snow, graupel
 - \rightarrow New parameterization of g based on mean axis ratio AR instead of D_{qe} (Fu, 2007)
- \rightarrow Idealized sensitivity study for different typical cloud types (cirrus, low stratus, mixed-phase stratus, SGS stratocumulus, convective anvil)
- → Real-case sensitivity studies over 7-day periods (only preliminary results yet)
- \rightarrow We have some preliminary ranking of the various new tuning parameters, but not definite yet.
- \rightarrow Continuation of open tasks and some extentions in a new PP T²(RC)²

500

 10^{3}

600

 10^{4}

Muskatel

Ritter

DWD

6

New optical properties of ice hydrometeors Deutscher Wetterdienst Wetter und Klima aus einer Hand

 \rightarrow Example: single scattering albedo for 2 infrared bands, function of D_{ae}

New optical properties of ice hydrometeors Deutscher Wetterdienst Wetter und Klima aus einer Hand

→ Example: g for 3 visible bands ("1"-"3") and 1 infrared band ("4"), function of AR

DWD

Problem: New radiation scheme – 32 new parameters. Which of them are most important?

Difficult to answer... it depends on cloud type.

1. Use *idealized* COSMO framework to create different cloud types 2. Decide which parameters are the most important for each cloud type

For example, we (preliminary) found out that:

Anvil of Cumulonimbus	Shallow convective cumulus	SGS Strato- cumulus	Mixed phase	Stratus	Cirrus
p1,p2,p3,p4,p5,p7,p8,p9,p12, p14,p21,p22,p23,p27,p28, p29,p30	p2,p4,p5, <mark>p6,p13</mark> ,p15, p16,p17, <mark>p30</mark>	p2,p4,p5 <mark>,p6,p13</mark> ,p15, p16,p17, <mark>p30</mark>	p1,p2,p3,p4,p5, p6,p7,p8,p9,p12, p13,p14,p15,p16, p17,p21,p22,p23, p24,p25,p26,p27, p28,p29,p30	p1,p2,p4, p6,p13,p15, p16,p17,p24, p25, p26,p30	p1,p2,p3,p4, p5,p7,p8,p9, p12,p14,p21, p22,p23,p27, p28,p29,p30

1.	lrad_incl_qrqsqg
2.	iradpar_cloud
3.	lrad_use_largesizeapprox
4.	itype_aerosol
5.	icloud_num_type_rad
6.	radqcfact
7.	radqifact
8.	rad_arearat_ls_i
9.	rad_arearat_ls_s
10.	rad_arearat_ls_g
11.	rad arearat Is h
12.	rhobulk is ini i
13.	reff ini c
14.	reff_ini_i
15,	cloud_num_rad
16.	zref_cloud_num_rad
17.	dz_oe_cloud_num_rad
18.	tqc_thresh_rad
19.	tqi_thresh_rad
20.	tqs_thresh_rad
21.	rhos_n0shigh_rad
22.	rhos_n0slow_rad
23.	n0s_low_rad
24	rhoc_nchigh_rad
25	rhoc_nclow_rad
24	ncfact_low_rad
27.	rhoi_nihigh_rad
28.	rhoi_nilow_rad
29.	nifact_low_rad
30.	qvsatfact_sgscl_rad

p6,p7,p13,p18,p19,p20,p30 - new tuning namelist parameters in the future version

All the others - predefine in the code

➔ Idealized simulation of a low stratus cloud:

Idealized sensitivity studies: example

1b. Idealized simulation of stratus cloud

Idealized sensitivity studies: Method to quantify "sensitivity" for ranking of param. Deutscher Wetterdienst Wetter und Klima aus einer Hand

2. Method: How to define sensitivity to model parameters?

For given time step t:

- Perform idealized COSMO simulations for many parameters combinations
- Replace the radiation dependency on the model parameters by an analytic function or a Meta-Model (MM):

$$\tilde{R}(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}, \tilde{x}_{4}) \cong \sum_{p=1}^{4} \frac{a_{p,1} + a_{p,2}\tilde{x}_{p} + a_{p,3}\tilde{x}_{p}^{2}}{a_{p,4} + a_{p,5}\tilde{x}_{p} + a_{p,6}\tilde{x}_{p}^{2}} + \frac{1}{2} \sum_{p=1}^{4} \sum_{i \neq p} b_{p,i}\tilde{x}_{p}\tilde{x}_{i}$$

$$\frac{Attenuation of global radiation (\%)}{100 \times \frac{R_{no} cloud - R(\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}, \tilde{x}_{4})}{R_{no} cloud}} \overset{\text{"Effective" parameter}}{\frac{f_{p}(x_{p}) - f_{p}(x_{p,def})}{MAX\{f_{p}(x_{p})\} - MIN\{f_{p}(x_{p})\}}} \qquad x_{1} \equiv radqcfact$$

$$x_{2} \equiv qvsatfact_sgscl_rad}{x_{3} \equiv rhoc_nclow_rad}}$$

$$x_{4} \equiv reff_ini_c$$

$$\frac{\delta \tilde{R}}{\delta \tilde{x}_{p}} = \text{Sensitivity to parameter} \tilde{x}_{p}$$

Synop Data -----

Control

+ k = 0.8, add qs, qr, qg, n_{c0} = 200e6, R_e for SGS water clouds = 5 µm, new Tegen aerosols, new optical properties

- + incr. Re for SGS water clouds to 15 μm
- + decr. n_{c0} to 50e6
- + Tegen-based n_{c0}
- + Re SGS water clouds back to 5 µm and SGS fact. red. to 0.005
- + set SGS fact. = 0.0 (no SGS clouds at all)

+ remove qs, qr, qg

- Porting of our test code to COSMO version 5.1_beta
- → New ice particle optical properties for the 8 RG92 wavelength bands by sizedistribution-integration of single-particle single-wavelength scattering data (provided by Quiang Fu from University of Washington), with subsequent wavelength band averaging:
 - \rightarrow Extended validity range of fits out to D_{ge} = 600 µm (before: 140 µm), now suitable for snow, graupel
 - \rightarrow New parameterization of g based on mean axis ratio AR instead of D_{ae} (Fu, 2007)
- \rightarrow Idealized sensitivity study for different typical cloud types (cirrus, low stratus, mixed-phase stratus, SGS stratocumulus, convective anvil)
- → Real-case sensitivity studies over 7-day periods (only preliminary results yet)
- \rightarrow We have some preliminary ranking of the various new tuning parameters, but not definite yet.
- \rightarrow Continuation of open tasks and some extentions in new PP T²(RC)²

DWD

DWD

6

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

DWC

Synop Data

Control

add qs, qr, qg, $n_{c0} = 200e6$, R_e for SGS water clouds = $5 \mu m$, new Tegen aerosols, new optical properties

+ incr. Re for SGS water clouds to 15 µm

DWD

→ Study with COSMO-DE (2.8 km)

DWD

6

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

DWD

Time in h

clouds = $5 \mu m$,

Synop Data -----

Control

+ k = 0.8, add qs, qr, qg, n_{c0} = 200e6, R_e for SGS water clouds = 5 µm, new Tegen aerosols, new optical properties

- + incr. Re for SGS water clouds to 15 μm
- + decr. n_{c0} to 50e6
- + Tegen-based n_{c0}
- + Re SGS water clouds back to 5 μm and SGS fact. red. to 0.005

Synop Data -----

Control

+ k = 0.8, add qs, qr, qg, n_{c0} = 200e6, R_e for SGS water clouds = 5 µm, new Tegen aerosols, new optical properties

- + incr. Re for SGS water clouds to 15 μm
- + decr. n_{c0} to 50e6
- + Tegen-based n_{c0}
- + Re SGS water clouds back to 5 µm and SGS fact. red. to 0.005
- + set SGS fact. = 0.0 (no SGS clouds at all)

Synop Data -----

Control

+ k = 0.8, add qs, qr, qg, n_{c0} = 200e6, R_e for SGS water clouds = 5 µm, new Tegen aerosols, new optical properties

- + incr. Re for SGS water clouds to 15 μm
- + decr. n_{c0} to 50e6
- + Tegen-based n_{c0}
- + Re SGS water clouds back to 5 µm and SGS fact. red. to 0.005
- + set SGS fact. = 0.0 (no SGS clouds at all)

+ remove qs, qr, qg

