

Soil moisture perturbations for COSMO in the COTEKINO PP

Nicola Loglisci, Riccardo Bonanno

ARPA Piemonte Piedmont Regional Agency for Environmental Protection

Aim of the task

Increase the variability among members of a high resolution convection permitting COSMO ensemble model taking into account lower boundary uncertainties ... SOIL MOISTURE

Steps of the research

- Literature review search for methods and parameterizations
- COSMO model sensitivity tests on the soil moisture initial conditions (soil temperature also taken into account); COSMO newsletter n. 14
- Selection of best performing soil moisture perturbation technique and tests with case studies COSMO newsletter n.15
- Special Project SPITSOIL at ECMWF
- Suites development at ECMWF supercomputer and tests on case studies (COSMO USER SEMINAR 2015)
- Other case studies
- Conclusions

1. Lower boundary uncertainties (mostly SM) have a great impact on the spread generated among ensemble members both on surface variables and upper level prognostic variables (difference between IFS and COSMO-EU soil moisture IC).

case study: 29/06/2011

- 1. Lower boundary uncertainties (mostly SM) have a great impact on the spread generated among ensemble members both on surface variables and upper level prognostic variables (difference between IFS and COSMO-EU soil moisture IC).
- 2. Convective conditions (spring/summer case studies) generate stronger spread (soil fluxes have a bigger impact) respect to those happening in and winter conditions (interaction with the orography or stable conditions dominant).

(1) 29-06-2011 00UTC - STRONG SYNOPTIC FORCING

(2) 10-11-2013 00UTC - FOEHN OVER THE PO VALLEY

(3) 25-01-2013 12UTC – STABLE CONDITIONS

- 1. Lower boundary uncertainties (mostly SM) have a great impact on the spread generated among ensemble members both on surface variables and upper level prognostic variables (difference between IFS and COSMO-EU soil moisture IC).
- 2. Convective conditions (spring/summer case studies) generate stronger spread (soil fluxes have a bigger impact) respect to those happening in and winter conditions (interaction with the orography or stable conditions dominant).
- 3. Spread comparable with the one coming from an ensemble system with perturbed atmospheric initial and boundary conditions (COSMO-LEPS).

- 1. Lower boundary uncertainties (mostly SM) have a great impact on the spread generated among ensemble members both on surface variables and upper level prognostic variables (difference between IFS and COSMO-EU soil moisture IC).
- 2. Convective conditions (spring/summer case studies) generate stronger spread (soil fluxes have a bigger impact) respect to those happening in and winter conditions (interaction with the orography or stable conditions dominant).
- 3. Spread comparable with the one coming from an ensemble system with perturbed atmospheric initial and boundary conditions (COSMO-LEPS).
- 4. Spread increases if the lower boundary uncertainties are coupled with those on the upper levels: complete perturbed ensemble system (soil IC and atmosphere IC / BC perturbed)

Different test suites have been developed at ECMWF:

SUITE EPS

Classic ensemble system: Atmospheric IC and BC from 10 random ECWMF EPS members, soil IC from ECMWF or COSMO-EU soil moisture analysis

SUITE SOIL

10 members made by perturbing soil moisture IC (from ECMWF or COSMO-EU soil moisture analysis) using Stochastic Pattern Generator (SPG)

SUITE EPS-SOIL (ECMWF)

"Completely" perturbed: SUITE EPS + SUITE SOIL – Soil moisture analysis from ECMWF

Last results

Additional test suites:

SUITE EPS-SOIL (COSMO-EU)

"Completely" perturbed: SUITE EPS + SUITE SOIL – Soil moisture analysis from COSMO-EU

SUITE EPS-PHYSICS

SUITE-EPS + physics perturbation

SUITE EPS-SOIL-PHYSICS (COSMO-EU)

"Completely" perturbed: SUITE EPS-SOIL (COSMO-EU) + physics perturbation SPITSOIL – ECMWF special project COSMO/CLM/ART User Seminar – Wroclaw – 7-10 September2015

case study: 15/05/2015

Conclusions

- Uncertainties of the lower boundary influence the performances of a high resolution ensemble system based on COSMO I2.
- Among the surface variables Soil Moisture give the biggest contribution generating and increasing spread of the near surface prognostic variables as well as upper in the troposphere.
- It is worth to work on a high resolution ensemble system with soil IC and atmosphere IC/BC perturbed: it positively increases the spread (in spring and summer convective conditions).
- Spread is larger when COSMO-EU soil moisture analysis is used as surface field to perturb with SPG technique (IFS being more wet).
- Verification gives interesting results, even if more data would benefit the statistics

Future developments Verification and ensemble technique

- 1. More simulations enabling a verification (possibly with VERSUS)
- Set up a COSMO-IT-EPS implementing results from KENDA (new Priority Project)

Acknowledgments

Chiara Marsigli, Andrea Montani Dmitriy Gayfulin, Michael Tsyrulnikov

ARPA SIMC (ITALY) HydroMetCenter (RUSSIA)

Thank you for your attention!