

Status report of

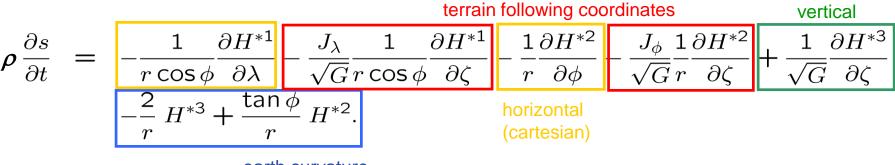
WG2 - Numerics and Dynamics

COSMO General Meeting 07-10 Sept. 2015, Wroclaw, Poland

Michael Baldauf (DWD)

Outline

- Model development work in 2015 •
 - Redesign of 3D diffusion •
 - Other work/Bug fixes in the RK dynamical core •
- Higher Order Spatial Schemes for the COSMO Model •
- Further plans •
- $PP CELO \rightarrow see presentation by Z. Piotrowski$ •
- New PP CDIC \rightarrow see presentation on Thursday •



DWD

Increase of numerical stability in the diffusion scheme for 3D turbulence

M. Baldauf (DWD)

scalar flux divergence:

earth curvature

scalar fluxes:

$$H^{*1} = -\rho K_s \frac{1}{r \cos \phi} \left(\frac{\partial s}{\partial \lambda} + \frac{J_\lambda}{\sqrt{G}} \frac{\partial s}{\partial \zeta} \right),$$

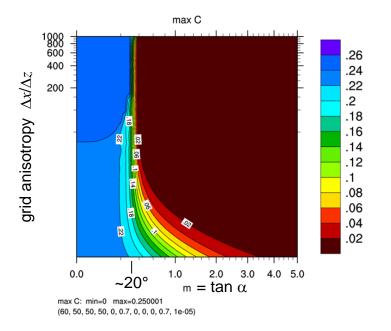
$$H^{*2} = -\rho K_s \frac{1}{r} \left(\frac{\partial s}{\partial \phi} + \frac{J_\phi}{\sqrt{G}} \frac{\partial s}{\partial \zeta} \right),$$

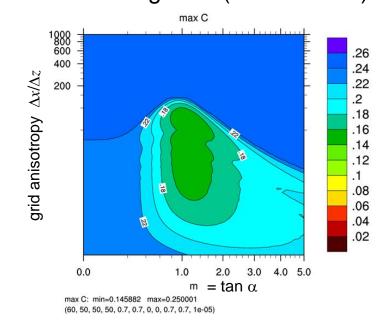
$$H^{*3} = +\rho K_s \frac{1}{\sqrt{G}} \frac{\partial s}{\partial \zeta},$$

analogous: ,vectorial' diffusion of *u*, *v*, *w*

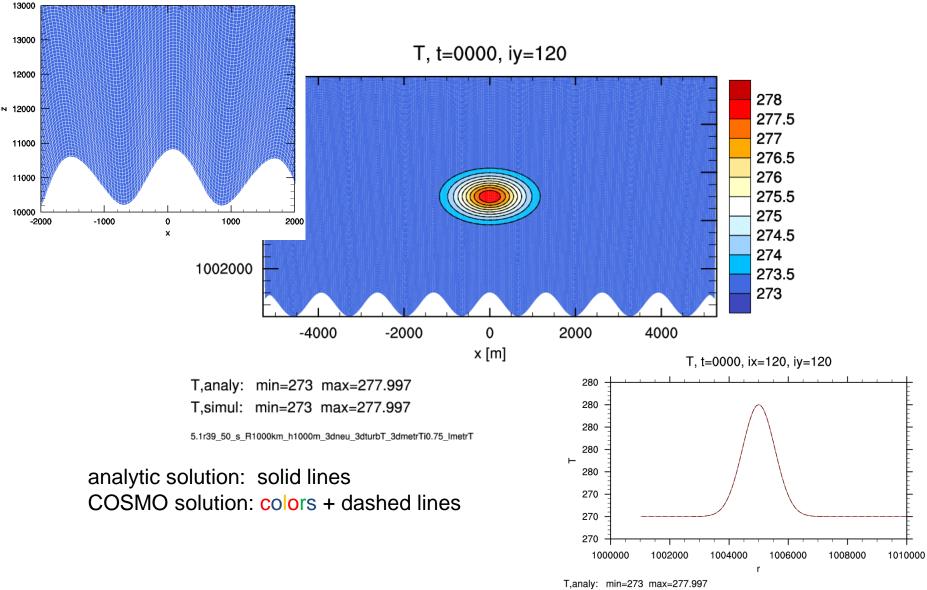
Baldauf (2005), COSMO-Newsl. Nr. 5

Increase of numerical stability in the diffusion scheme for 3D turbulence


- The current implementation is **not stable** in steep terrain • (found by W. Langhans, O. Fuhrer, ...)
- Stability analysis indicates that 3D diffusion in terrain following coordinates ٠ may be stable in *arbitrary steep* terrain if
 - use as many terms as possible in the tridiagonal solver ٠
 - some off-centering ٠
- \rightarrow new implementation of the 3D diffusion was necessary.
- Testing by idealised tests with known analytic solution successfully carried out both for scalar diffusion (Baldauf, 2005) and vector diffusion (new!)
- New implementation runs stable in real case simulations ٠
- Available in COSMO 5.3
- Contribution to task 5.2.5 of the COSMO Science plan 2015-2020 (remark: 3D turbulence probably not necessary for $\Delta x > 1$ km)
- Thanks to U. Schättler, G. Zängl, S. Brdar for help and discussions!

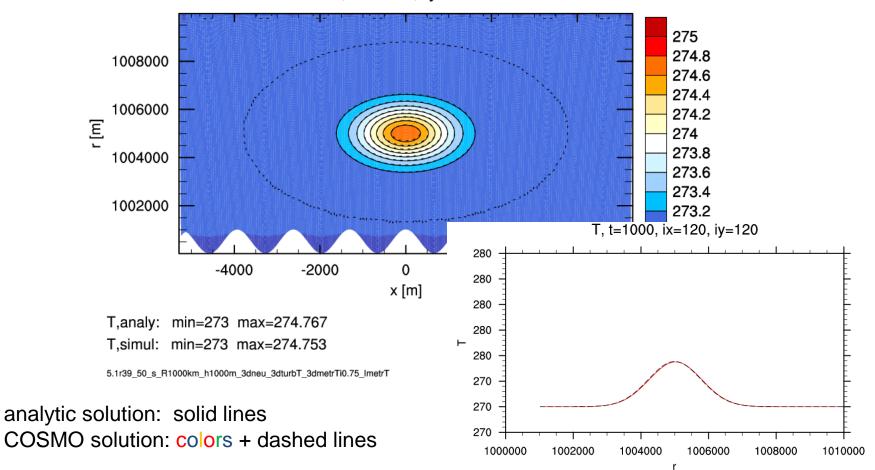


vertically implicit, only ,pure' z-deriv, off-centering=0.7 (=old COSMO)



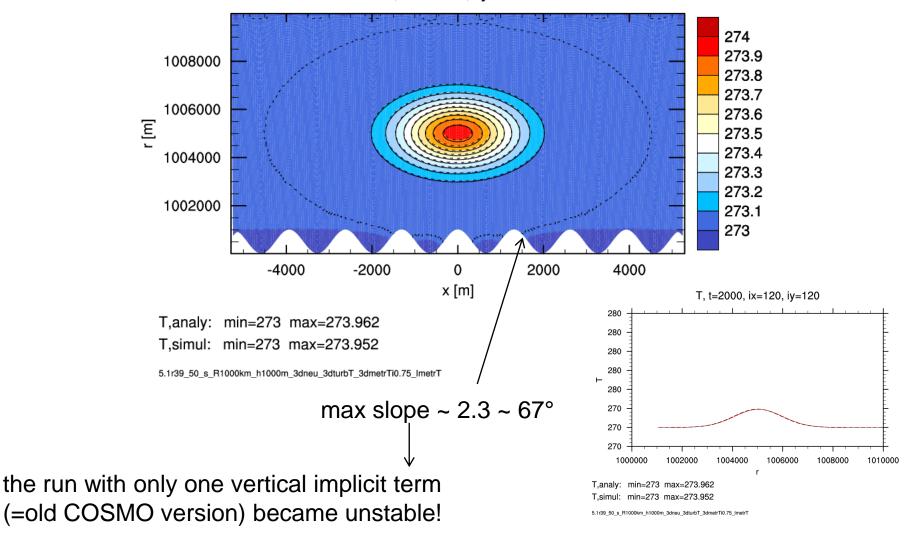
vertically implicit treatment of all possible terms, off-centering=0.7 (COSMO 5.3)

similar stability properties for scalar diffusion

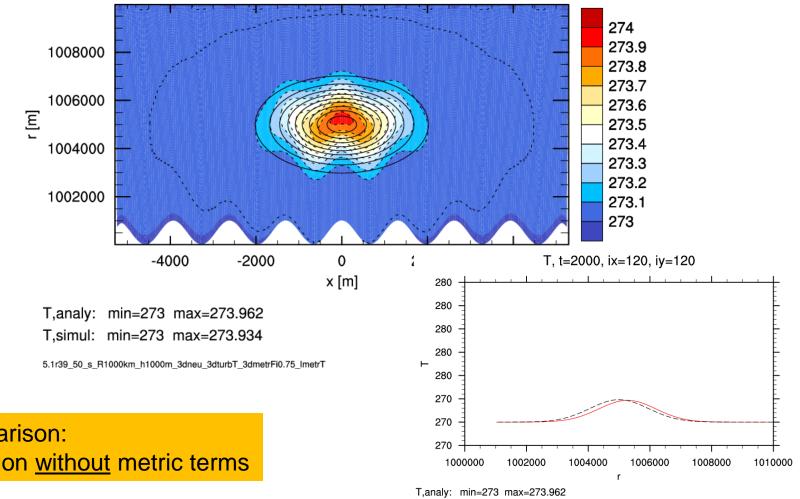


T,simul: min=273 max=277.997

 $5.1r39_50_s_R1000km_h1000m_3dneu_3dturbT_3dmetrTi0.75_ImetrT$


T, t=1000, iy=120

T,analy: min=273 max=274.767 T,simul: min=273 max=274.753


5.1r39_50_s_R1000km_h1000m_3dneu_3dturbT_3dmetrTi0.75_ImetrT

T, t=2000, iy=120

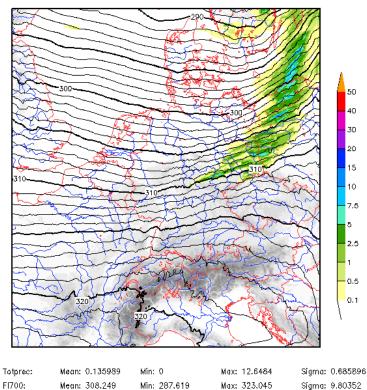
8

T, t=2000, iy=120

T,simul: min=273 max=273.934

5.1r39_50_s_R1000km_h1000m_3dneu_3dturbT_3dmetrFi0.75_ImetrT

for comparison: 3D diffusion without metric terms

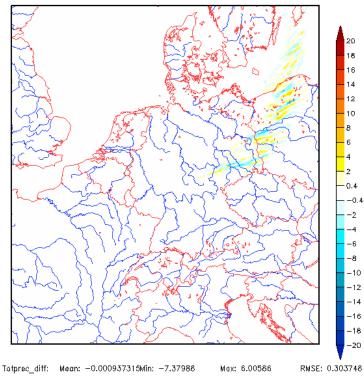


Real case: ,12 May 2015, 06 UTC run', COSMO-D2, 1h precipitation sum

with 3D diffusion

Start time: 12.05.2015 06:00 UTC Forecast time: 12.05.2015 20:00 UTC Total precipitation [mm/1h] (shaded) C-DE 2.2km L65 5.2addMB_3dturbmetr

Geopot. at 700 hPa [gpdm] (dist. isol. 1.0 gp


difference to 1D diffusion

 Start time:
 12.05.2015
 06:00
 UTC

 Forecast time:
 12.05.2015
 20:00
 UTC

 Total precipitation [mm/1h] (shaded)

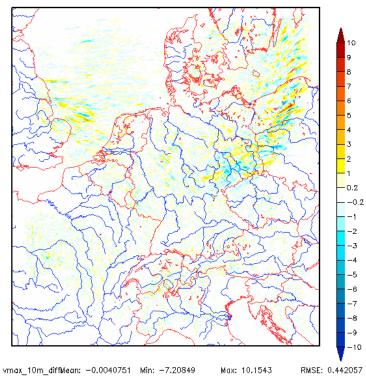
C-DE 2.2km L65 5.2addMB_3dturbmetr - C-DE 2.2km L65 5.2addMB

Real case: ,12 May 2015, 06 UTC run', COSMO-D2, gusts

Start time: 12.05.2015 06:00 UTC C-DE 2.2km L65 5.2addMB_3dturbmetr Forecast time: 12.05.2015 20:00 UTC max |v| in 10 m [m/s] (shaded) MSL Pressure [hPa] (dist. isol. 2.0 hPa) 32.7 28.5 24.5 20.8 17.2 13.9 10.8

with 3D diffusion

vmax_10m: Mean: 9.19631 Min: 0.141409 Max: 27.1683 Sigma: 3.9702 PMSL: Mean: 1017.85 Min: 1001.59 Max: 1030.74 Sigma: 5.88843

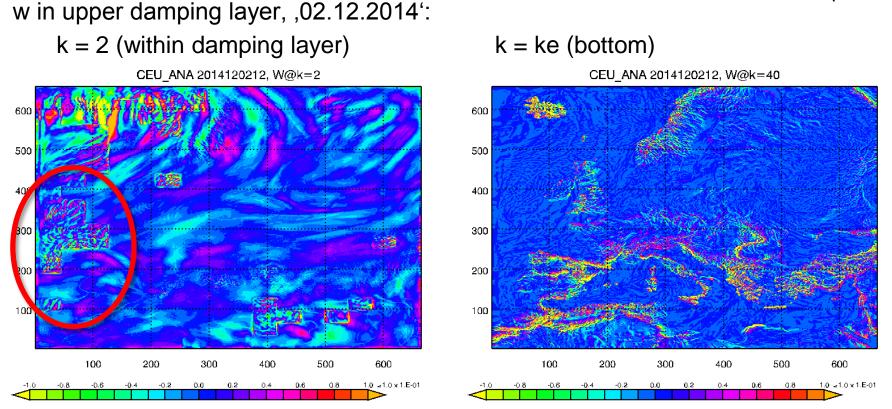

difference to 1D diffusion

 Start time:
 12.05.2015 06:00 UTC

 Forecast time:
 12.05.2015 20:00 UTC

 max /v/ in 10 m, diff. [m/s]

C-DE 2.2km L65 5.2addMB_3dturbmetr - C-DE 2.2km L65 5.2addMB



Bug in computation of kflat on distributed domains

Uli Blahak (DWD)

Bug concerning computation of "kflat" for grib2 input data, which turns off the damping layer over flat surfaces! Explanation next slide!

Reason and bug fix

Problem exists for grib2 input data:

- Because for grib2, kflat can no longer be determined from the meta data in the grib file, it is computed in the initialization stage of COSMO. This computation was done on each processor domain separately. However, this only works, if the spread of hsurf > 10 m. If this is not the case, kflat was set to 1 (e.g., if hsurf = 0.0 everywhere).
- In COSMO, kflat was used in a loop boundary in the computation of the Rayleigh damping coefficients, but if kflat = 1, no coefficients are computed and remain at their initial value of 0.0

→ Solution:

- → Eliminated kflat from the computation of the damping coefficients
- → Exchange kflat after computation and take the min over all domains.
- Set kflat = ke_tot-1, if the domain is completely flat, because kflat is used as loop boundary in other parts of the code to save computing time.
- → The problem was discovered only shortly before the release of COSMO 5.1. Therefore the fix is not part of 5.1, but will come with 5.3.

Reformulated divergence damping coeff. in new fast waves solver (II)

M. Baldauf (DWD), Guy deMorsier (MeteoCH)

Problem: model crash in COSMO-1 at ,04.11.2014' at MeteoCH

Solution:

again a correction of the slope dependent reduction of the divergence damping coefficient (*Baldauf, 2013*) in a staggered grid.

- 1) COSMO 4.26: do a spatial averaging of the damping coefficient
- 2) COSMO 5.1: no averaging of the coefficient; coefficient is determined by the maximum steepness of the left and right slope at the scalar position
- 3) new for COSMO 5.3: as for 5.1, but take the average of the left and right slope.

Cures all of the previous problems, too.

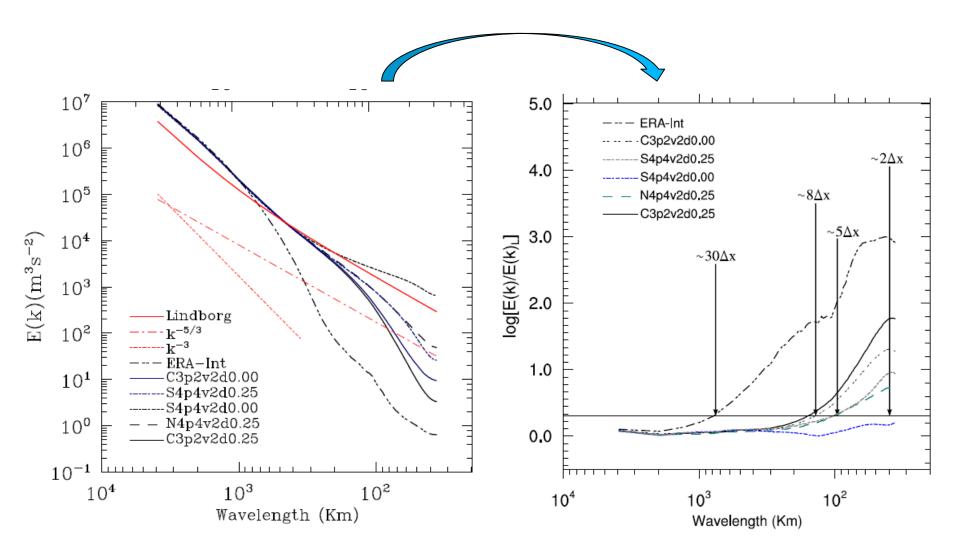
... further work done in/for WG2

- New **explicit sedimentation scheme** for the 2-moment cloud microphysics scheme, mitigating problems with rainrate spikes for longer time steps, Motivation: explicit sedimentation locally unstable for higher Courant numbers, semi-implicit scheme is (currently) not efficient enough, available in COSMO 5.3 (U. Blahak, DWD) \rightarrow see talk 'status cloud microphysics'
- Bug fix in the ,targeted diffusion to avoid cold pools' (A. Arteaga, MeteoCH) • \rightarrow roughly this halves the strength of the diffusion (retuning of diffusion coefficient necessary?)
- 'targeted diffusion ... ' now also avoids , hot pools' (O. Fuhrer, MeteoCH) \rightarrow COSMO 5.1.1

Higher Order Spatial Schemes for the COSMO Model

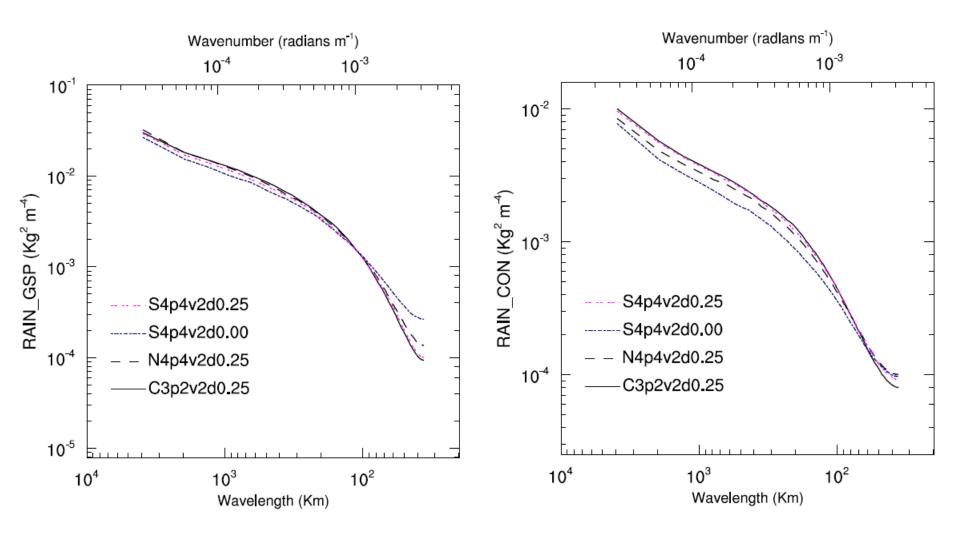
A. Will, J. Ogaja (BTU Cottbus)

New discretization of the advection operator:

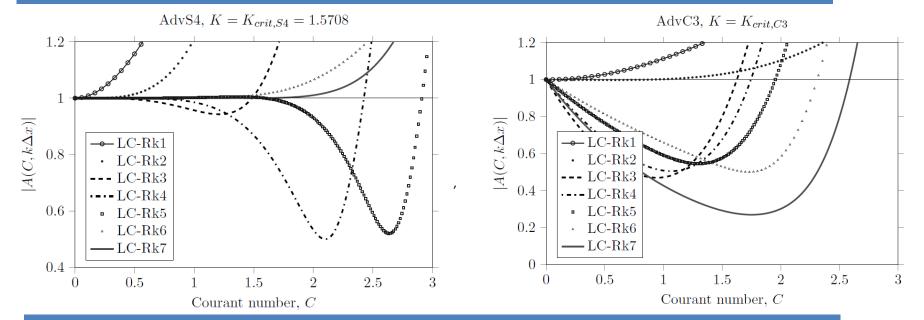

$$AdvS4 := (\mathbf{v}_{\mathbf{h}} \cdot \nabla_{h}u)_{i+\frac{1}{2},j} := \frac{9}{8} \overline{u}^{O4,\lambda} \delta_{\lambda} u^{\lambda} - \frac{1}{8} \overline{u}^{O4,\lambda} \delta_{3\lambda} u^{3\lambda} + \frac{9}{8} \overline{v}^{O4,\lambda} \delta_{\phi} u^{\phi} - \frac{1}{8} \overline{v}^{O4,\lambda} \delta_{3\phi} u^{3\phi}$$

kinetic energy conserving discretization (Morinishi et al. (1998))

Additionally one can use 4th order discretizations of horizontal derivatives in the fast waves solver.


Schemes:	Implicit diffusion	KE conservation	Explicit diffu- sion coefficient	Model run time at $\Delta t = 150s$
C3p2v2d0.00:	Yes	No	0.00	Beyond 3 months ^{\ddagger}
C3p2v2d0.25:	Yes	No	0.25	Beyond 20 years
N4p4v2d0.25:	No	No	0.25	Beyond 3 months [§]
S4p4v2d0.00:	No	$Yes(\text{for}, \nabla \cdot \mathbf{v_h} = 0)$	0.00	Beyond 20 years
S4p4v2d0.25:	No	No	0.25	Beyond 20 years
S4p2v2d0.00:	No	No¶	0.00	up to 1st month

5. Effective model resolution: A: Real case zonal kinetic energy spectra


b-tu Brandenburg University of Technolog Cottbus

4. Real case climate simulation: Spectra of July precipitation

b-tu Brandenburg University of Technolog Cottbus

2. Linear advection equation: amplific. factor |A(C,K_crit)|

2. Linear advection equation: Critical Courant number

Schemes	AdvC2	AdvS2	AdvC3	AdvC4	AdvS4	AdvC5	AdvC6	AdvS6
LC - RK1	0	0	0	0	0	0	0	0
LC - RK2	0	0	0.87358	0	0	0	0	0
LC - RK3	1.73205	1.73205	1.62589	1.26222	1.48614	1.43498	1.09210	1.39494
LC - RK4	2.82843	2.82843	1.74526	2.06120	2.42437	1.73197	1.78339	2.27793
LC - RK5	0	0	1.95350	0	0	1.64375	0	0
LC - RK6	0	0	2.31039	0	0	1.86707	0	0
LC - RK7	1.76442	1.76442	2.58599	1.28581	1.51200	2.26079	1.11251	1.41600

analysis analogous to Baldauf (2008) JCP

b-tu Brandenburg University of Cottbus

6. Implementation

b-tu Brandenburg University of Technology

6.2 New namelist parameters

l_higher_order_ss	logical	If .TRUE., 4 th order interpolation is used for all schemes but advection
ladv_symmetric	logical	If .TRUE., symmetric formulation of advection is used.

6.3 Implementation and testing procedure

 COSMO_5.0: Implementation finished Compilation of COSMO_5.0 on mistral (DKRZ) successfull. Reference simulations using 4.24_hos on mistral planned to start on 10.9.2015 Test simulations (using COSMO_5.0_hos) on mistral planned to start on 17.9. 2015
 COSMO_5.3: Implementation planned to start 20.9. 2015 Test simulations on mistral planned to start end of September 2015.

Further plans and next steps

Adaptive time step

A. Smalla, T. Reinhard (DWD)

Todo:

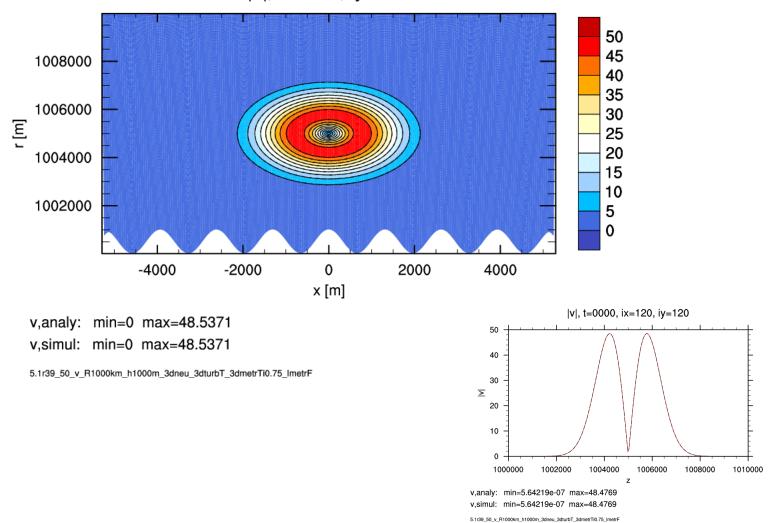
- existing work must be migrated from COSMO 4.26 to 5.1
- MPI-parallelisation still needed
- Treatment of parameterisations with different time steps (e.g. convection)

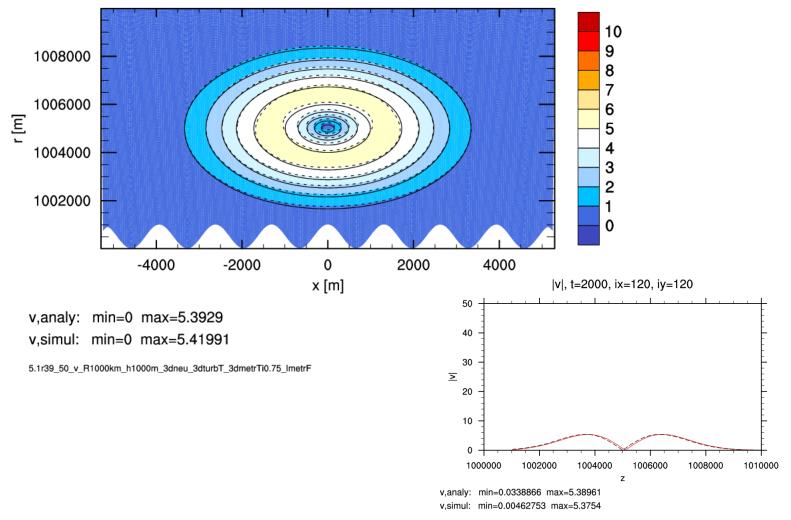
Due to the work load invested for the change from GME to ICON at MetBW, \rightarrow implementation of the adaptive time step into the next COSMO 5.4 version is less probable.

Kaas (2008)-conserving extension of the Semi-Lagrangian Advection Guy deMorsier (MeteoCH)

(Work initiated at EMPA (ETH) has now moved to MeteoCH)

WG2 publications in 2015




Vector diffusion test

|v|, t=0000, iy=120

Vector diffusion test

|v|, t=2000, iy=120

5.1r39_50_v_R1000km_h1000m_3dneu_3dturbT_3dmetrTi0.75_ImetrF