

WG4

PT CORSO-A:

Final status

E. Astakhova, D. Alferov, E.Avgoustoglou, J-M. Bettems, D.Blinov, P.Eckert, A.Montani, G.Rivin, I.Rozinkina, M.Shatunova, J.Helmert, (RHMC, DWD, MS, ARPA-SIMC, HMC)

TL: I.Rozinkina, G.Rivin

PT CORSO-A:

Goal:

- To transfer of results of the PP CORSO to COSMO software, applications and know-how.
- To prepare the new COSMO tools and practical instructions for be available for COSMOcommunity

The resources requested: 1.0 FTE Period: 09.2014 - 08.2015 Participants: DWD, MeteoSwiss, ARPA-SIMC,HMS, RHM

\bigcirc

PT CORSO-A:

Subtasks:

- **ST1:** The guidance of the optimal domain's size selection for COSMO-1 versions for the regions with complex mountain relief
- **ST2:** Implementation of algorithm of subgrid "h-correction" of T2m (due to the differences between model's and real heights) based on COSMO T lapse rate forecasts (h-correction)
- **ST3:** Preparing of archives COSMO-Sochi-EPS applicable for research aimed at improving COSMO EPS systems and available for community
- **ST4:** Preparing of recommendations for forecasters "The features of using and interpretation of the results of deterministic and ensemble meso- scale modeling"

PT CORSO-A:

Subtasks expected results :

- ST1: The results of experiments and know how proposals for choosing minimal domain size of COSMO-1
- **ST2:** Results of tests for different weather conditions and adapted aalgorithm & software for the implementation into Fieldextra and into techniques of forming of COSMO meteogram tables
- ST3: Archives of EPSs forecasts for the Sochi 2014 modelling area and the corresponding manuals
- **ST4:** Guidelines for forecasters presentation concerning the features of interpretation of High resolution NWP products

\mathbf{O}

ST1:

The guidance of the optimal domain's size selection for COSMO-1 versions for the regions with complex mountain relief

Exp. results: The results of experiments and know how proposals for choosing minimal domain size for COSMO-1 domains

G.Rivin, M.Shatunova, D.Blinov, (RHMC) J.Helmert (DWD)

ST1: The guidance of the optimal domain's size selection for COSMO-1 versions for the regions with complex mountain relief

G.Rivin, M.Shatunova, D.Blinov, (RHMC) J.Helmert (DWD)

Motivation: CORSO PP obtained results shown the strong dependence of the predicted precipitation amount and spatial distribution on the model's domain size.

What was performed:

- 1. Several simulation domains were selected taking into account the prevailing direction of air mass transfer (using of GWT_27 weather type classification) and its transformation due to local conditions (e.g. orography effect).
- 2. Simulations are made for the period 3-20 February, 2014.
- 3. Forecasts verification by VERSUS was made for the mentioned period.
- 4. Forecasts for different domains for heavy precipitation cases were investigated.
- 5. Forecasts evaluated for the central part of the domains only.

Simulation domains for test cases

DOMAIN 1 startlat_tot = -10.45, startlon_tot = -37.5 ie_tot = **750**, je_tot = **750**

DOMAIN 5 startlat_tot = -10.0, startlon_tot = -37.0 ie_tot = **450**, je_tot = **450**

DOMAIN 2 startlat_tot = -10.0, startlon_tot = -36.0 ie_tot = **400**, je_tot = **650**

DOMAIN 6 startlat_tot = -9.5, startlon_tot = -36.0 ie_tot = **300**, je_tot = **300**

DOMAIN 4 startlat_tot = -10.0, startlon_tot = -36.0 ie_tot = **300**, je_tot = **450**

/initial and boundary conditions from COSMO-Ru7

without data assimilation

Verification also made by VERSUS for a period 3-20 February,

The experiments have demonstrated that

- the more sensitive process are the cloudiness development over whole region and the precipitation amounts near border (app 30-40 rm) of selected domains.
- The processes for coastal region and over Sea were more sensitive that the processes into mountains

Accumulated precipitation (February 18, 2014)

Results and conclusions:

<u>T2m</u>

- Influence of the simulation domain size on the results appears after several hours of the simulation in dependence of the sites' location (8 h for coastal cluster, 15 h for mountain)
- The difference between the T2m forecasts varies from 1 to 3°.
- Difference of RMSE of the T2m and DPT forecast obtained for different domains can reach 1°.

<u>Wind</u>

• There is no significant effect of the domain size on wind speed forecast.

Coastal cluster

Mountain cluster (h>1000 m)

Results and conclusions: CORSO-A: ST1 Precipitation

- Influence of the simulation domain size on the precipitation forecasts appears after 6 hours.
- Increasing of precipitation sum was noted in the border area of the smaller domain vs. greater one.
- For the site located in the center part of domains maximum difference between forecasted precipitation (for different domains) was 4 mm/3h and reached 20mm/24h.

Mountain cluster, h > 1000 m

Coastal cluster

ST2: Implementation of algorithm of subgrid "h-correction" of T2m (due to the differences between model's and real heights) based on COSMO T lapse rate forecasts (h-correction)

Expected results:

Results of tests for different weather conditions and adapted algorythm & software for the implementation into Fieldextra and into techniques of forming of COSMO meteogramm tables *Will be finalize till Dec 2015*

D.Blinov, I.Rozinkina(RHMC), E.Avgoustoglou (HMC), J-M. Bettems (MS)

ST2: Implementation of algorithm of subgrid "h-correction" of T2m (due to the differences between model's and real heights) based on COSMO T lapse rate forecasts (h-correction)

Expected results:

Results of tests for different weather conditions and adapted algorythm & software for the implementation into Fieldextra and into techniques of forming of COSMO meteogramm tables *Will be finalize till Dec 2015*

D.Blinov, I.Rozinkina(RHMC), E.Avgoustoglou (HMC), J-M. Bettems (MS)

ST3: Preparing of archives COSMO-Sochi-EPS applicable for research aimed at improving COSMO EPS systems and available for community

Expected results:

Archives of EPSs forecasts for the Sochi 2014 modeling area and the corresponding manuals

E. Astakhova, D.Alferov (RHMC), A.Montani (ARPA-SIMC)

Goal:

Preparation of archives of 7 km and 2.2 km EPSs forecasts for the Sochi-2014 modeling area applicable for research aimed at improving COSMO EPS systems and available for community

PT CORSO-A: ST3

Results:

 Archive of COSMO-EPS forecasts in TIGGE-LAM style for the period of Olympics/Paralympics
 Web-tool to export forecasts and observations
 A list of most interesting cases during Olympics/Paralympics
 ICs and BCs for high-resolution EPS available on demand

Sochi.ru Two COSMO-EPS were developed **COSMO MO** in CORSO project

COSMO-S14-EPS – a "clone" of COSMO-LEPS moved to the Sochi region COSMO-Ru2-EPS – downscaling of COSMO-S14-EPS 10 members

Specification of CORSO Unified Archive for Sochi (follows TIGGE-LAM)

•Data format:	WMO-GRIB2
•Period:	January 14,2014 – March 16, 2014
•Ensemble systems:	COSMO-S14-EPS, COSMO-Ru2-EPS
•Model runs:	2 per day (00 UTC, 12 UTC)
• <i>Time step frequency.</i> • <i>Grid:</i>	3h (cumulated parameters are not archived at step 0) original model grid
•Parameters:	T 2m, Td 2m, U 10m, V 10m, gusts 10m, pmsl, 3-h accum prec
•Static fields:	orography, land-sea mask (are archived only once)

GRIB files for ensembles contain the following metadata: size of ensemble; ensemble member's number; type of forecast (perturbed/control)

CORSO archive is a part of FROST-2014 archive,

which additionally contains forecasts by 4 other EPSs: GLAMEPS (11km), HarmonEPS(2.5 km), NMMB-EPS(7 km), LAEF-EPS (11 km)

PT CURSU-A: 513

Web-tool to export gridded ensemble forecasts from the archive

0

		-												
Select i	interval (of foreca	ast initial	dates										
From	2014-01-	14	To 2	014-03-1	6									
Select :	forecast	origin a	nd initial	time										
	<u>CO</u> 5	SMO-S1	<u>4-EPS</u>	GLA	MEPS	LAEF	-EPS	NMM	B-EPS	COS	MO-Ruí	2-EPS	Harm	onEPS
00:00														
06:00				[
<u>12:00</u>														
18:00				[
Select a	all <u>Clea</u>	r												
Select	ensembl	e membo	ers											
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53	54					
Select a	all Clea	<u>r</u>												
-	T 44		-											
Foreca	st Lead	l'ime [hr	·]											
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
45	46	47	48	51	54	57	60	63	66	69	72			
Select a	all <u>Clea</u>	r												
C 1 .														
Select	meteoro.	logical p	arameter	rs								10	. 10	1
10 r	netre U	wind con	mponent			10	metre V	wind co	omponen	ıt	m/s	nd Gusts	s at 10 m	i height,
Dev ground	v Point I), K	Tempera	ture (at 2	2 m abov	e the	Te groun	Temperature (at 2 m above the ground). K			Land-sea mask				
Mea	an sea le	vel press	sure, Pa			Or	Orography				Total precipitation, mm			
Select a	all <u>Clea</u>	r												•
Your	mail:													2
Purker		- 1- او مربوب				tification	to this E	mail						
Subm	it (Once	your data	are read	y you wil	iget a no	tification	to this E-	mail)						

http://frost2014.meteoinfo.ru/forecast/exportgridforcs

CONSORTUM FOR SMALL SCALE MODELING

3

SMO

Web-tool to export observations from the automatic meteorological stations in the Sochi region

Select a time interval between 2011-0	01-01 23:00:01 and 2014-09-29 13:24	:53	
Date from 2014-01-15 00:00	to 2014-03-19 00:00		
Select stations			
Snowboard-1025	Freestyle-1080	Biathlon-1500	Biathlon-1400
Biathlon Stadium	Ski Stadium	Nordic Combination-67:	5 Nordic Combination-615
Ski Jump-650	Ski Jump-800	Sledge-830	Sledge-700
🗌 Krasnaya Poliana (Roshydromet)	Kordon Laura (Roshydromet)	Gornaya Karusel-1500 (Roshydromet)	Gornaya Karusel-1000 (Roshydromet)
Aibga (Roshydromet)	Solokh-Aul (Roshydromet)	Kichmai	Imeretinka (Roshydromet)
Agrostation Sochi (Roshydromet)	Kepsha (Roshydromet)	Lazarevskoye (Roshydro	omet) 🗌 RKHU-1 (2320m)
RKHU-2 (2137m)	RKHU-3 (2043m)	RKHU-8 (1740m)	RKHU-4 (1580m)
RKHU-7 (Finish, 980m)	Adler-AMSG	Magry (Roshydromet)	Helicopter Pad Roza-Khutor
Lunnaya Polyana (Helicopter Pad)	Krasnaya Poliana-Verblude (Megafon)	Adler-Norluis (Megafon	a) 🗌 SBT-Dacha (Megafon)
Adler-Airport (Megafon)	SYNOP stations		
Select all Clear			
Salast norameters			
Utind Smood	Wind Dimetion	Air Transmittan	Dury Delint Tomorrow
wind Speed			
Ground Temperature	Relative Humidity	Precipitation	Precipitation Intensity
Atmospheric Pressure	U Visibility	Cloud Base Height	Reflected Sort-Wave Irradiance
└ Total irradiance			
Select all Clear			
Your e-mail:	Accept	t	sochi 2010

http://frost2014.meteoinfo.ru/obs/export-observations-data

A list of most interesting cases during the Olympics/Paralympics

Date	Process/Phenomenon (impact on competitions)	Behavior of models
February 7, 2014	Foehn	Underestimation of temperature by the most part of models
February 10-11, 2014	Precipitation dissipation	Precipitation predicted by the overwhelming majority of models but not observed actually
February 15, 2014	Wind gusts	Underestimation of maximum wind speed in Krasnaya Polyana (by 3.5-7 m/s) by the most part of models
February 16-17, 2014	Local cyclogenesis/Poor visibility (postponed competitions in biathlon and snowboard)	Not all forecasting systems performed well
February 18, 2014	Cold front/Precipitation	Accurate precipitation forecast by the majority of models
February 22, 2014	Foehn	Underestimation of air temperature (by $2.4-4.4^{\circ}$ C) by the most part of models
March 11, 2014	Cold front/Temperature (postponed competitions in Alpine skiing)	Not so accurate forecast of maximum air temperature and diurnal variations
March 13, 2014	Weak slow process/Precipitation above 1500 m caused by "settling" of clouds	Inaccurate forecast of precipitation by the majority of models
March 16-17, 2014	Cold front/Wind gusts	Underestimation of wind speed by the most part of models

- •The CORSO and FROST-2014 archives are ready
- •The Web tools to export data are prepared
- Various observation data are available

Welcome to the Sochi testbed!

ST4: Preparing of recommendations for forecasters "The features of using and interpretation of the results of deterministic and ensemble meso- scale modeling"

Expected results:

Guidelines for forecasters – presentation concerning the features of interpretation of High resolution NWP products

I.Rozinkina, (RHMC) P.Eckert (MS)

CONSORTUM FOR SMALL SCALE MODELING

3

Recommendations to forecasters on the use of products of small	 INTRODUCTION The small scale (SS) NWP – why is feasible? Types of SS NWP:
scale NWP	3.1. $\Delta x > 10$ km 3.2. $3 \text{ km} \le \Delta x < 10$ km 3.3. $\Delta x < 3$ km 4. SS NWP products: 4.1. Large-scale short-range (till 3 days) forecasting 4.2. Forecasting of weather phenomena
0045	 4.3. Forecasting for mountain regions 4.4. Forecasting for points

WG4

PT CORSO-A:

Thanks for your attention!

Thanks to:

E. Astakhova, D. Alferov, E.Avgoustoglou, J-M. Bettems, D.Blinov, P.Eckert, A.Montani, G.Rivin, I.Rozinkina, M.Shatunova, J.Helmert, (RHMC, DWD, MS, ARPA-SIMC, HMC)

