

WG7 - COTEKINO

Chiara Marsigli

ARPA Emilia-Romagna – SIMC, Bologna, Italy

Outline

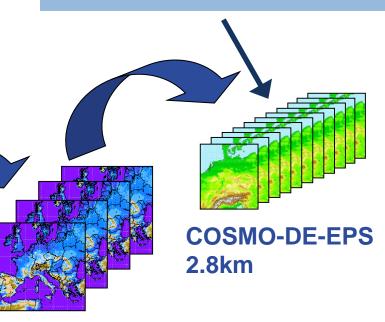
- WG7 review
 - COSMO-DE-EPS
 - COSMO-E
 - COSMO-IT-EPS
 - COSMO-Ru2-EPS
 - Polish ensemble
 - COSMO-ME-EPS
 - COSMO-LEPS (next talk)
- COTEKINO Priority Project
 - Project ended
 - SPPT results presented in former meetings
 - Results from the soil/surface perturbation task in next talks
 - Technical Report will be prepared

COSMO-DE-EPS operational set-up & changes since last COSMO GM

→ 20 members, grid size: 2.8 km

→8 starts per day (00, 03, 06,... UTC)

lead time: 0 - 27 hours


0 - 45 hours for 03 UTC

→ ICON replaced GME (Jan. 2015)

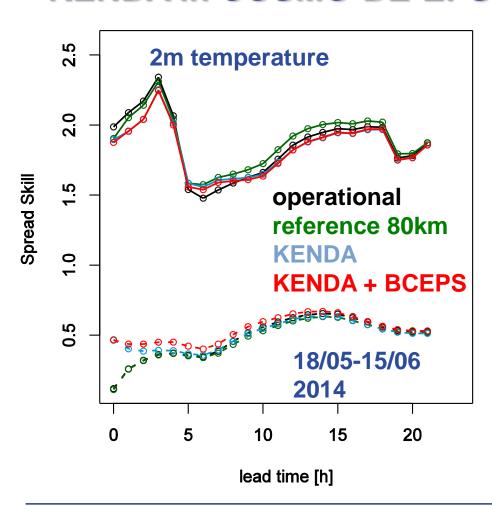
→ GFS with higher resolution

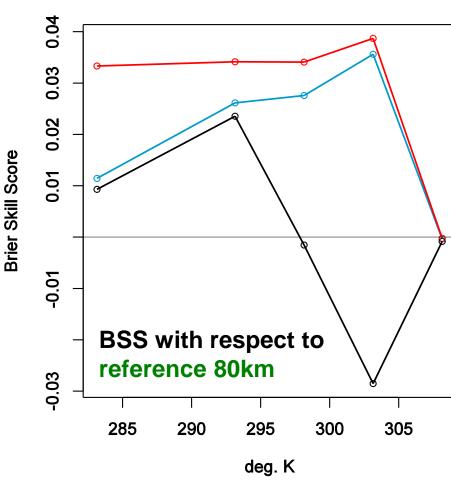
(Jan. 2015)

perturbation of model physics (non-stochastic) and soil moisture

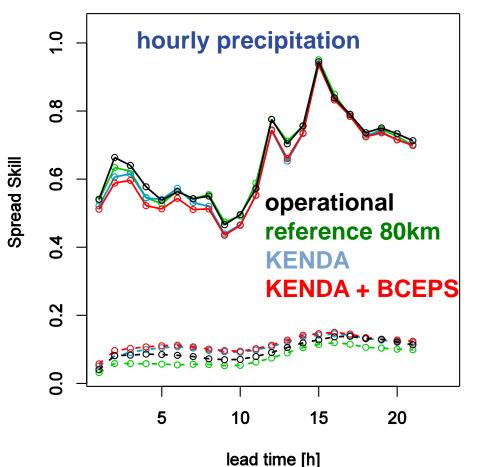
COSMO 7km

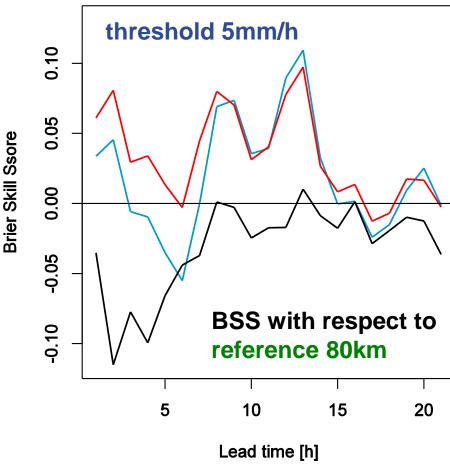
BC-EPS (for BC and IC perturb.)




ICON, IFS, GFS, GSM

KENDA in COSMO-DE-EPS





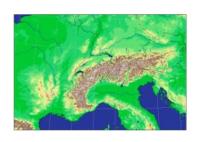
KENDA in COSMO-DE-EPS

EM-scheme – a model for the model error (E. Machulskaya)

$$\frac{\partial \psi}{\partial t} = \left[\frac{\partial \psi}{\partial t} \right]_{\text{det}} + \eta(t) \frac{\partial \eta}{\partial t} = -\gamma \eta + \gamma \lambda^2 \nabla^2 \eta + \sigma \xi(t)$$

 ψ :prognostic variables (T, QV, U, V)

 γ , λ and σ areweather-dependentandarederivedfrompastdata, mostimportantpredictoris $\left|\frac{\mathrm{d}T}{\mathrm{d}t}\right|$



Upcoming changes

- → KENDA operational (second half of 2016)
- → COSMO-D2-EPS with 2.2km, 65 levels, westward extension of domain (second half of 2016)
- → 40 members (2016/17)
- → ICON-EPS as BC for COSMO-DE-EPS (not before 2017)

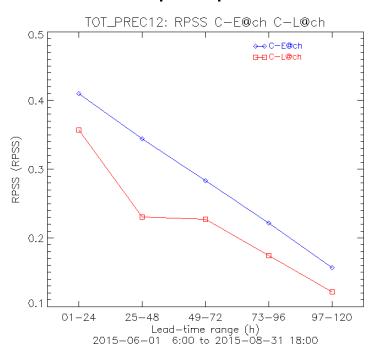
O

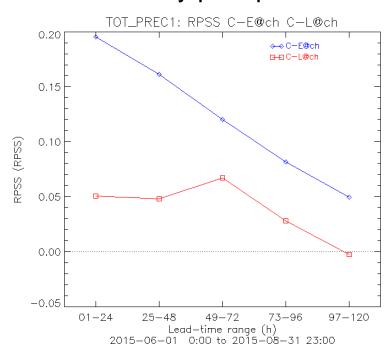
COSMO-E setup

- 21 members (control and 20 perturbed runs)
- convection-permitting resolution (2.2 km mesh-size, 60 levels)
- two forecasts per day (00 and 12 UTC)
- up to +120h for Alpine area
- initial condition (perturbations): KENDA assimilation cycle
 - KENDA ensemble mean for control
 - KENDA members 1-20 (out of 40)
- lateral boundary condition (perturbations): IFS-ENS 18 & 06 UTC:
 - IFS-ENS control for control
 - IFS-ENS members 1-20 (out of 50)
- model uncertainty: SPPT
- COSMO version 5.0+/GPU using single precision

COSMO-E

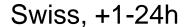
performance against COSMO-LEPS Summer 2015, all lead times, Swiss

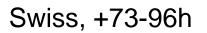

Parameter	RPS(S)	Outliers	Spread/ Error	Resolution Thrs1	Resolution Thrs2
T 2m	\checkmark	\checkmark	$\overline{\checkmark}$	V	\checkmark
Td 2m	X	X	X	\checkmark	\checkmark
ff 10m	\checkmark	\checkmark	$\overline{\checkmark}$	V	\checkmark
Prec 12h	\checkmark	\checkmark	$\overline{\checkmark}$	$\overline{\checkmark}$	\checkmark
Prec 1h	\checkmark	\checkmark	$\overline{\checkmark}$	$\overline{\checkmark}$	\checkmark
Gusts	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark


RPSS, JJA 2015

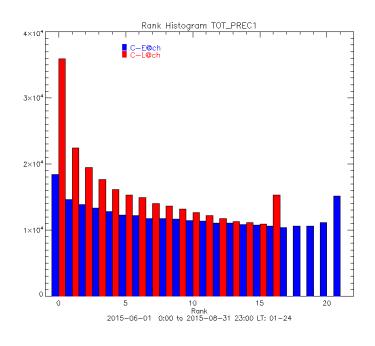
12h precipitation

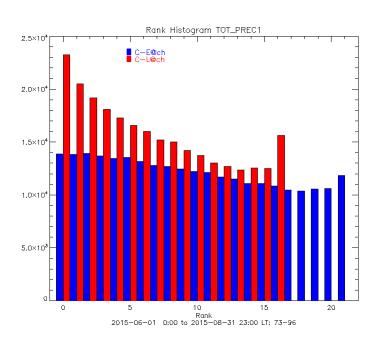
hourly precipitation




Thresholds: 0.1, 1, 2, 5, 10, 20, 30, 50mm

- skill until end of forecast range
- COSMO-E clearly outperforms COSMO-LEPS for Swiss domain




Rank histograms, 1h precip, JJA 2015

 COSMO-E shows quite nice, flat distribution, while the COSMO-LEPS distribution is somewhat tilted

Thank you for your attention