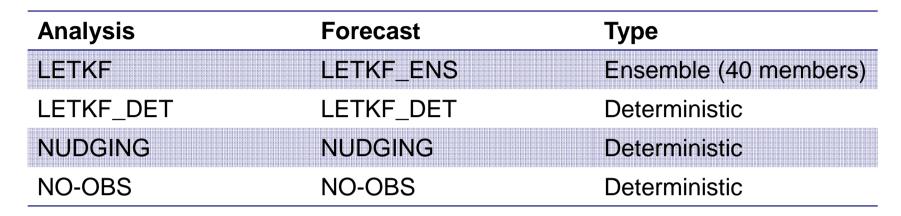

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Eidgenössisches Departement des Innern EDI Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

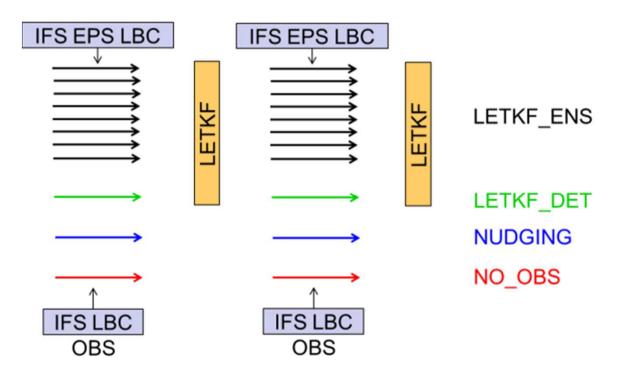
Progress in setting up KENDA at MeteoSwiss

Daniel Leuenberger, Simon Förster and André Walser MeteoSwiss

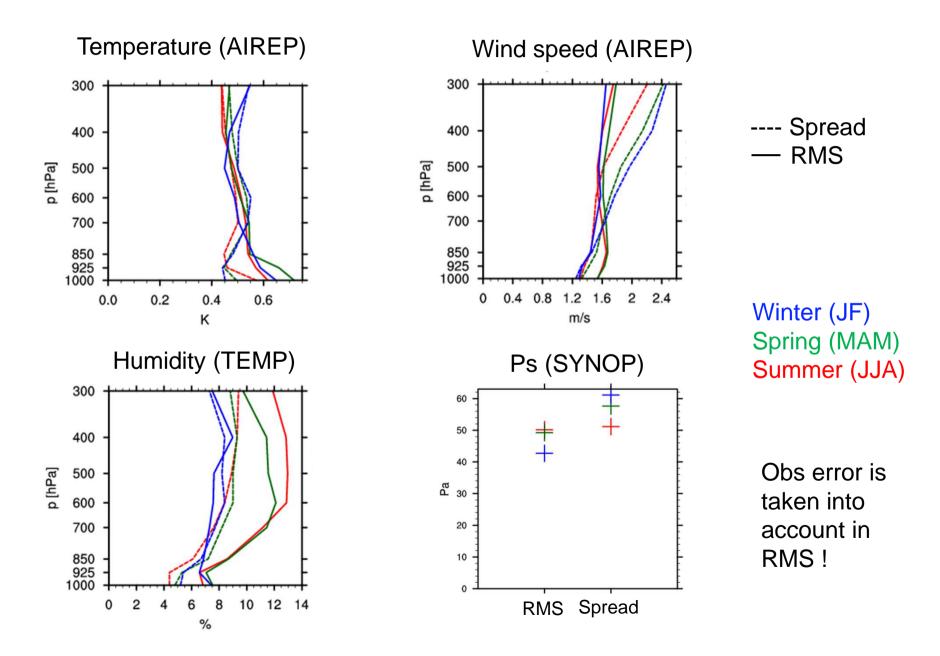
7.9.2015, COSMO General Meeting, Wroclaw, Poland

Next Generation MCH NWP System


Outline


- Introduction
- Experimental Setup
- KENDA Performance
 - Analysis
 - Deterministic forecasts
 - Ensemble forecasts
- Experiment with soil moisture perturbations
- Deterministic 1.1km analysis
- Summary and Outlook

Introduction


- Use of KENDA for
 - IC perturbations for COSMO-E
 - IC for deterministic COSMO-1
- Real-time assimilation cycle running since 11.1.2015
 - 40 ensemble members + deterministic analysis
 - 2.2km grid length
- Test forecasts (March and April 2015)
 - Deterministic 2.2km forecasts, comparison with nudging
 - COSMO-E ensemble forecasts, comparison with IC perturbations downscaled from ECMWF-EPS

Real-time LETKF Assimilation Cycle

Seasonal LETKF Spread-Skill Relation

Deterministic Forecast Verification

SYNOP

Radiosondes (PBL)

Combiprecip

Parameter	ME	STDE
Surf. Pres.		
T 2m		
Td 2m	0	×
DD 10m		
FF 10m		

Parameter	ME	STDE
т	0	
RH	0	×
DD		
FF		

Better Frequency Bias Very similar FSS

- March and April 2015
- Benchmark: nudging analysis
- Cooler and moister than nudging (too cool and too moist)
- Especially during night time
- Generally better than nudging at daytime, slightly worse during night

Ensemble Forecast Verification

- March and April 2015
- Focus on first 6 forecast hours
- Comparison against COSMO-E started from downscaled IFS-ENS analysis

Median Verification

Probabilistic Verification

Parameter	ME	STDE	Parameter	RPS(S)	Outliers	Spread/ Error	Resolution Thrs1	Resolution Thrs2
Surf. Pres.			T 2m					
T 2m	0		Td 2m				×	
Td 2m		×	ff 10m					
DD 10m	0		Prec 12h			×		
DD 10m	0		Prec 1h					
FF 10m			Gusts					

• Reduces spin-up, particularly Td 2m and FF 10m bias

Deterministic Forecast Verification

SYNOP

Radiosondes (PBL)

Parameter ME STDE Surf. Pres. 0 T2m x Td 2m × DD 10m FF 10m 0

Parameter	ME	STDE
Т		
RH		
DD		×
FF		

Combiprecip

Better Frequency Bias for thr<0.5mm/3h Strong underestimation for larger thr

Significant lower FSS than in nudging

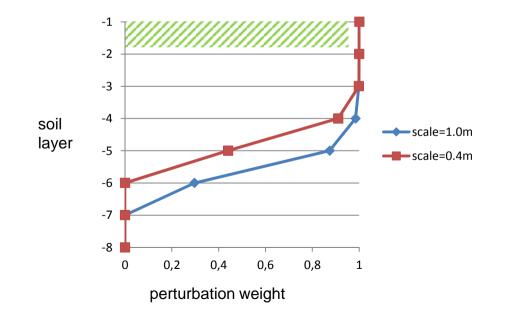
• 22.5. – 1.7.2015

- Benchmark: nudging analysis
- Cooler than nudging (too cool) at 2m above ground

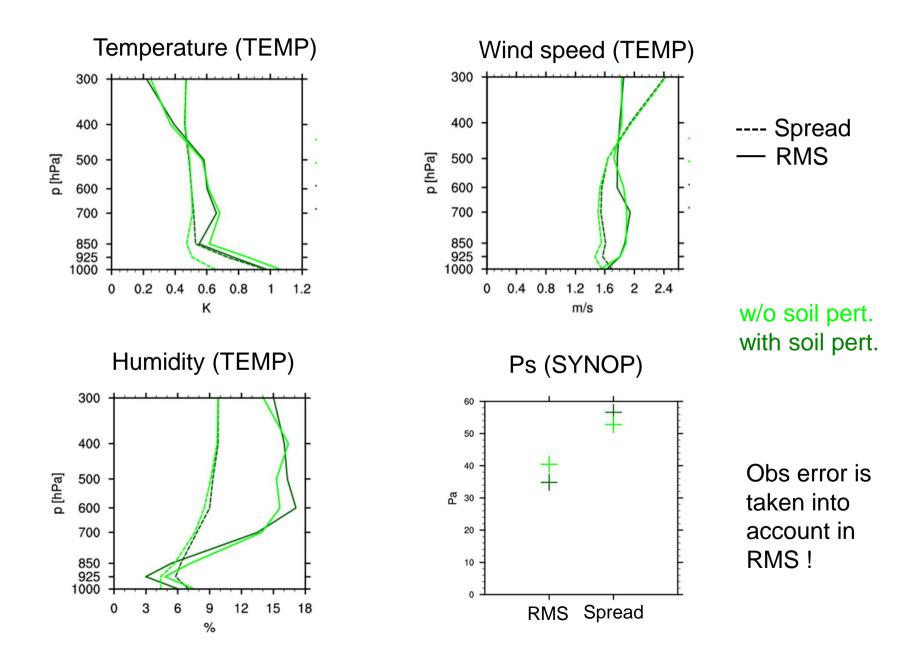
Ensemble Forecast Verification

- 22.5.-1.7.2015
- Focus on first 6 forecast hours
- Comparison against COSMO-E started from downscaled IFS-ENS analysis

Median Verification


Probabilistic Verification

Parameter	ME	STDE	Parameter	RPS(S)	Outliers	Spread/ Error	Resolution Thrs1	Resolution Thrs2
Surf. Pres.			T 2m		\boxtimes			
T 2m	0		Td 2m	X	X	X		
Td 2m			ff 10m					
DD 10m			Prec 12h	X			X	
DD IOM			Prec 1h					
FF 10m			Gusts					

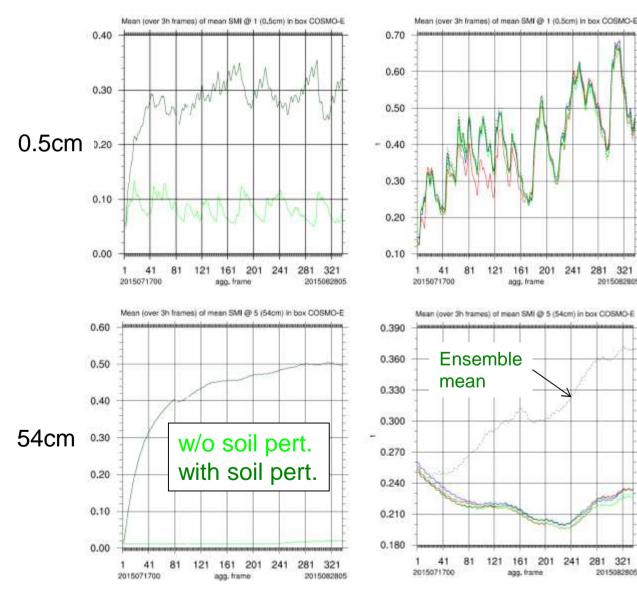

- Still problems in humidity and temperature
- Results not well understood, needs more investigation

Soil moisture perturbations

- Test soil moisture perturbations in LETKF to increase lowlevel spread
- Horizontal correlation lengths: 10km and 100km
- Perturbation amplitude (stddev) 0.002 (SMI Units)
- Scale in vertical Gaspari-Cohn-Function: 1m

Effect on LETKF Performance

O Effect on Soil Moisture Index (SMI)


SMI Spread

SMI

2015082805

241 281 321

2015082805

Soil layer	Pert. weight	Spread unpert.	Spread pert.
1 (0.5cm)	0.999	0.08	0.30
2 (2.0cm)	0.999	0.08	0.30
3 (6.0cm)	0.998	0.08	0.35
4 (18cm)	0.984	0.05	0.45
5 (54cm)	0.873	0.01	0.50
6 (162cm)	0.296	0.005	>0.35
7 (486cm)	0.000	0.005	>0.35
8 (1458cm)	0.000	0.005	>0.35

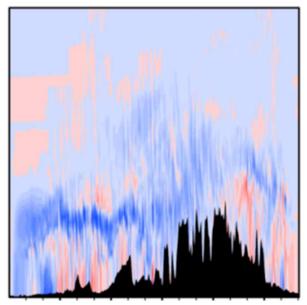
Spread probably too large, especially in lower layers

Drift in SMI in lower layers unacceptable!

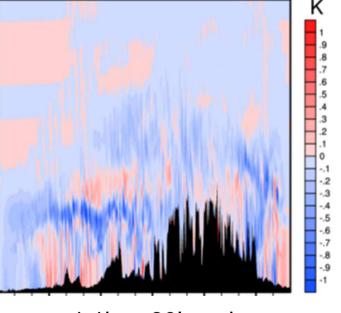
Adapt perturbations

COSMO-1 Analysis

- Deterministic LETKF Analysis with 1.1km grid length (ensemble with 2.2km)
- Update equation for deterministic forecast


$$\boldsymbol{x_d^a} = \boldsymbol{x_d^f} + \boldsymbol{K} \big(\boldsymbol{y} - \boldsymbol{H}(\boldsymbol{x_d^f}) \big)$$

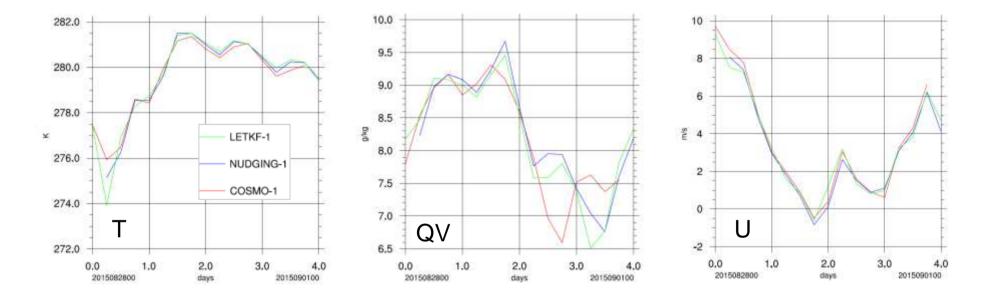
Interpolation to 1.1km


• Real-time assimilation cycle runs since 28.08.2015

COSMO-1 Analysis

• First test update result from 28.5.2015, 13UTC:

Temperature Analysis increment (det ana – det fg)



1.1km, 80Level

2.2km, 60 Level

COSMO-1 Analysis

Evolution of domain-average T, QV and U averaged between 0 and 3200m agl

First 4 days of experiment look similar to Nudging and COSMO-1 experiments

Summary

- Real-time KENDA assimilation cycle runs very stably since mid-January 2015
- Verification results from first months are encouraging
- Deterministic 2.2km analysis performance similar to nudging
- COSMO-E forecasts started from KENDA compare mostly favourably to those downscaled from IFS-ENS (reduced spin-up effect)
- Approaching to meet benchmark, but some problems in PBL humidity and temperature, still lack of spread there
- Soil moisture perturbations in LETKF need further tuning, make sure to avoid soil moisture drifts in data assimilation cycle!

Outlook

- KENDA for COSMO-E: preopr: Nov 2015, opr: Spring 2016
- KENDA for COSMO-1: preopr: ? , opr: ?
- Todo until preoperational:
 - Investigation of RH and T problems in PBL
- Todo until operational
 - Assimilation of TD_2M (and possibly: T_2M) Internship of Tobias Necker (LMU Munich, Nov 2015 – January 2016)
 - Improvement of soil moisture perturbations
 - Further tuning (use SPPT in addition to RTPP)
 - Use of grib2 in COSMO and LETKF