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Methodological problems in the EnKF we intend to
alleviate in the new filter

@ EnKF analysis equations are derived from the assumption that the
background-error covariance matrix B is exact. But this cannot be the case in high
dimensions.

@ EnKF uses ad-hoc regularization of the ensemble covariance matrix B: spatial
localization plus covariance inflation. Both are not theoretically optimal.

© In the EnKF's analysis equations, there is no intrinsic feedback from observations
to background-error statistics. This requires external adaptation or manual tuning.
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Background

Myrseth and Omre (2010) proposed to remove the assumption that the
background-error covariance matrix B and the background-error mean field
m are known deterministic quantities, replacing it by the assumption that
these are uncertain and random.

Bocquet (2011) assumed that B is random and imposed a non-informative
prior for it—in order to change the (Gaussian) prior distribution of the
state x to a more realistic continuous mixture of Gaussians.
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Hierarchical Bayes Ensemble Filter (HBEF): principle

We follow Myrseth and Omre (2010) and:

Q SplitB=P+Q
@ Accordingly split the background ensemble

© Allow observations to influence the covariances
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Hierarchical Bayes Ensemble Filter (HBEF): design

In a nutshell: introduce a full-fledged secondary filter.

© Analysis

Update the extended control vector x, P, Q using both ensemble and
observational data.

@ Forecast

Propagate in time not only x (as in EnKF), but also current point
estimates of P, Q (using persistence).
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Analysis: basics

From the prior distribution p’(x, P, Q)—to the posterior distribution:

Pa(x7 P7 Q) = P(x7 P7 Q’Xme) Xpe’ Y) X pf(xu P7 Q) : P(Xme7 Xpe7 Y|X7 P) Q)
where

p(X™me, XPe y|x,P, Q) x p(X™|Q) - p(XP¢|P) - p(y|x)
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Analysis: prior distributions

@ The cornerstone of the HBEF is the conditional Gaussian assumption
for the state:
x|P,Q ~ N(m,P + Q)

@ The technical assumption on the covariance matrices is the Inverse
Wishart distribution.

M Tsyrulnikov and A Rakitko (HMC) Hierarchical Bayes Ensemble Kalman Filter Wroctaw, 7 Sep 2015 6 /17



Ensemble likelihoods

Assumptions:
@ Members of the model-error ensemble are Gaussian given Q

@ Members of the predictability ensemble are Gaussian given P

P(X™e|Q) o Q| % e~ i (e -m)T @ remm) —
QI 2 e 2H(E™Q (1)

© Having the model-error ensemble likelihood implies that ensemble
members can be treated as generalized observations!

@ No need and no room for approximations, no free parameters in the

ensemble likelihood!
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Analysis: Computational scheme

Three options:

(i) full posterior

(ii) approximate posterior, and

(iii) approximate posterior with no feedback from observations to
covariances,

The simplest option (iii):

xQf + NS™e . ¢Pf+ NSPe
= and PP = ———.

Q" X+ N Y

Then, compute B? = P? + Q7 and use B? to update the state (to
compute the analysis x?).
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Numerical experiments: A 1-D model of “truth”

The “true” state satisfies

X = Fix—1 + okex,

where both the forecast operator Fx and the model-error standard
deviation oy are also stochastic:

Fk — F_ = /L(Fk_l — F_) +O'F€f,

and similarly for oy.
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“Truth”, observations (circles), and the three analyses
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Analysis RMSEs as functions of ensemble size
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Analysis RMSEs as functions of observation-error st.dev.
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Analysis RMSEs when the model-error variance is distorted
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Accuracy of B (performance of the secondary filter)

Filter Error bias Error RMS Mean “true” B
B_Z—B_k rms (B} — Bx) By
EnKF -0.8 6.8 7.9
HBEF -0.6 3.9 7.4
Reference KF -0.0 0.9 7.0

M Tsyrulnikov and A Rakitko (HMC) Hierarchical Bayes Ensemble Kalman Filter Wroctaw, 7 Sep 2015 15 / 17



Conclusions

@ The new filter (HBEF) consistently addresses the inevitable uncertainty in the B
matrix—Dby treating it as a random partially known random matrix.

@ The HBEF has a full-fledged secondary filter that optimally updates uncertainty in
the state estimates.

@ Ensemble members are assimilated in the HBEF as generalized observations.

@ The HBEF replaces the Gaussianity assumption by the conditional Gaussianity,
which allows the filter to cope with non-Gaussian prior distributions of the state.

@ The HBEF provides an optimized feedback from observations to background-error
covariances.

@ The HBEF is tested for a one-dimensional system and found significantly superior
to the Var, EnKF, and HEnKF under most regimes of the system and most data
assimilation setups.

@ Even the cheapest version of the HBEF outperforms the traditional EnKF.
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Comments

@ The manuscript “Hierarchical Bayes Ensemble Kalman Filtering” is
now under review in Physica D.

@ The manuscript can be downloaded from
arXiv.org
or
ResearchGate.net

Thank you!
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