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Methodological problems in the EnKF we intend to
alleviate in the new filter

1 EnKF analysis equations are derived from the assumption that the
background-error covariance matrix B is exact. But this cannot be the case in high
dimensions.

2 EnKF uses ad-hoc regularization of the ensemble covariance matrix B: spatial
localization plus covariance inflation. Both are not theoretically optimal.

3 In the EnKF’s analysis equations, there is no intrinsic feedback from observations
to background-error statistics. This requires external adaptation or manual tuning.
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Background

Myrseth and Omre (2010) proposed to remove the assumption that the
background-error covariance matrix B and the background-error mean field
m are known deterministic quantities, replacing it by the assumption that
these are uncertain and random.

Bocquet (2011) assumed that B is random and imposed a non-informative
prior for it—in order to change the (Gaussian) prior distribution of the
state x to a more realistic continuous mixture of Gaussians.
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Hierarchical Bayes Ensemble Filter (HBEF): principle

We follow Myrseth and Omre (2010) and:

1 Split B = P+Q

2 Accordingly split the background ensemble

3 Allow observations to influence the covariances
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Hierarchical Bayes Ensemble Filter (HBEF): design

In a nutshell: introduce a full-fledged secondary filter.

1 Analysis
Update the extended control vector x,P,Q using both ensemble and
observational data.

2 Forecast
Propagate in time not only x (as in EnKF), but also current point
estimates of P,Q (using persistence).
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Analysis: basics

From the prior distribution pf (x,P,Q)—to the posterior distribution:

pa(x,P,Q) = p(x,P,Q|Xme ,Xpe , y) ∝ pf (x,P,Q) · p(Xme ,Xpe , y|x,P,Q)

where

p(Xme ,Xpe , y|x,P,Q) ∝ p(Xme |Q) · p(Xpe |P) · p(y|x)
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Analysis: prior distributions

The cornerstone of the HBEF is the conditional Gaussian assumption
for the state:

x|P,Q ∼ N(m,P+Q)

The technical assumption on the covariance matrices is the Inverse
Wishart distribution.
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Ensemble likelihoods

Assumptions:

Members of the model-error ensemble are Gaussian given Q

Members of the predictability ensemble are Gaussian given P

p(Xme|Q) ∝ |Q|−
N
2 e−

1
2

∑︀N
k=1 (x

me
k −m)

⊤Q−1(xmek −m) ≡

|Q|−
N
2 e−

N
2 tr(S

meQ−1), (1)

1 Having the model-error ensemble likelihood implies that ensemble
members can be treated as generalized observations!

2 No need and no room for approximations, no free parameters in the
ensemble likelihood!
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Analysis: Computational scheme

Three options:
(i) full posterior
(ii) approximate posterior, and
(iii) approximate posterior with no feedback from observations to
covariances,

The simplest option (iii):

Qa :=
𝜒Qf + NSme

𝜒+ N
and Pa :=

𝜑Pf + NSpe

𝜑+ N
. (2)

Then, compute Ba = Pa +Qa and use Ba to update the state (to
compute the analysis xa).
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Numerical experiments: A 1-D model of “truth”

The “true” state satisfies

xk = Fkxk−1 + 𝜎k𝜀k , (3)

where both the forecast operator Fk and the model-error standard
deviation 𝜎k are also stochastic:

Fk − F̄ = 𝜇(Fk−1 − F̄ ) + 𝜎F 𝜀
F
k , (4)

and similarly for 𝜎k .
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“Truth”, observations (circles), and the three analyses
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Analysis RMSEs as functions of ensemble size
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Analysis RMSEs as functions of observation-error st.dev.
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Analysis RMSEs when the model-error variance is distorted
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Accuracy of B (performance of the secondary filter)

Filter Error bias Error RMS Mean “true” B

B*k − Bk rms (B*k − Bk) Bk

EnKF -0.8 6.8 7.9
HBEF -0.6 3.9 7.4
Reference KF -0.0 0.9 7.0
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Conclusions

The new filter (HBEF) consistently addresses the inevitable uncertainty in the B
matrix—by treating it as a random partially known random matrix.

The HBEF has a full-fledged secondary filter that optimally updates uncertainty in
the state estimates.

Ensemble members are assimilated in the HBEF as generalized observations.

The HBEF replaces the Gaussianity assumption by the conditional Gaussianity,
which allows the filter to cope with non-Gaussian prior distributions of the state.

The HBEF provides an optimized feedback from observations to background-error
covariances.

The HBEF is tested for a one-dimensional system and found significantly superior
to the Var, EnKF, and HEnKF under most regimes of the system and most data
assimilation setups.

Even the cheapest version of the HBEF outperforms the traditional EnKF.
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Comments

The manuscript “Hierarchical Bayes Ensemble Kalman Filtering” is
now under review in Physica D.

The manuscript can be downloaded from
arXiv.org

or
ResearchGate.net

Thank you!
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