The correction of initial values of temperature based on T2m measurements

S

Russian Hydrometeocentre

Denis Blinov Anastasia Revokatova Inna Rozinkina Gdaly Rivin

COSMO GM2015, Wroclaw, 7-10 September

Motivation

Errors temperature at low levels exist in initial fields from GME/ICON and DAS for domain Cosmo-Ru7

The nudging assimilation system with does not help, because - DA does not use observations of temperature at 2 m

- It does not change the temperature of surface and soil

Low quality of forecast

Errors in the initial fields can occur for unknown reasons (for RHM). Therefore, we need to have a tool to change this situation - **Module correction**.

The idea

To correct initial values of temperature at low model levels by using observations (temperature at 2 meters)

Algorithm

- 1. Find increment of temperature at 2m (Δ t2m) in point of station
- 2. Horizontal extrapolation of Δt^2m to the model grid
- Vertical extrapolation ∆t2m to low model levels and surface and soil temperature
- 4. Result increments in soil and atmosphere levels to add to first guest

Algorithm (1/4)

Find increment of temperature at $2m (\Delta t 2m)$ in point of station:

- 1. Find temperature at 2m (T_2M_{fg}) from first guest using logarithmic profile between temperature surface (T_S) and lowest model levels (T_10M)
- 2. Bilinear interpolation T_2M_{fg} to points of stations $T_2M_{fg_st}$
- 3. Find temperature increments from model and observation temperature at $2m \Delta t2m$
- Filter values with large values Δt2m (15°C), ΔHeight (200m)

Algorithm (2/4)

Horizontal extrapolation

Interpolation of $\Delta t2m$ to the model grid

Based on Rivin G., Heise E. «Operational DWD numerical forecasts as input to flood forecasting models», Computational Science and High Performance Computing, Spinger Berlin / Heidelberg, p. 83-97, 2006.

Cressman scheme:

- For each grid point 3 point neighborhood with different effective radiuses have been chosen (10, 40, 70 and 110 km)
- For each station *k*, in the point neighborhood horizontal distance from the grid (ph) and pv difference in height therebetween were calculated. Then *factor (coefficient)* by which the temperature at the station *k* taken into account during the interpolation was determined.

 $w_{k}^{m} = h_{k}^{m} v_{k}^{m},$ $h_{k}^{m} = 0.5 [a \ 1 + \cos (\pi \rho_{h}^{k,m}/R_{scan})],$ $v_{k}^{m} = 0.5 [a \ 1 + \cos (\pi \rho_{v}^{k,m}/H_{max}) / (1 + 0.8 \rho_{v}^{k,m}/H_{max})], \quad H_{max} = max(\rho_{v}^{k,m}, Z_{max}).$

If sum of $\Sigma w > threshold values$, than $P_m = \Sigma k (w_k^m P_{obs,k}) / \Sigma_k w_k^m$

Example horizontal extrapolation <u>**At2m**</u>, domain CM-Ru7

At2m from -10°C to

+10°C

Algorithm (3/4)

Correction of temperature al low model levels:

- Assume that at GME analysis field temperature (T) at 925 hPa (~550 m) is pretty exactly (due-to using of atmospheric sounding data)
- Thus we need to correct T from the surface to 550 m. Correction increment decrease from surface to 550 m (Influence of t2m decreases with H)
- Monin-Obukhov theory (logarithmic temperature profile)

Dependence of coefficient for T correction from log H

$$K_{l} = \ln\left(\frac{H_{top}}{H_{l}}\right) / \ln\left(\frac{H_{top}}{H_{1}}\right)$$

During the experiments the optimal amount of corrected levels was determed. **5 levels from surface ~ 120-150 m**

Algorithm (3/4)

Soil layers

Vertical coefficients in the soil are calculated via the Fourier coefficients

$$K_{l} = \frac{z_{bottom} - z_{l+1}}{z_{bottom} - z_{1}}, l=1,...,7 \text{ (bottom=7)}$$

8

9

Algorithm (4/4)

Initial conditions are corrected:

- atmosphere temperature T_{lev} (level =1-5 from surface)
- surface temperature T_S, T_SNOW
- soil temperature T_SO_{lev} (level=1-6)

external parameters

Dependence of T profile changes on forecast time

List of experiments

- Contr control experiment without observation (initial data from GME)
- **2. DAS** initial data from DAS
- **3. Corr** initial data from GME + module correction
- **4. Corr_DAS**: Experiments with couple system module correction and DAS (3) corr + (2) DAS
 - 1. Full correction: atmosphere and soil
 - 2. Only soil temperature correction

For verification we selected cases with large error of initial field of temperature

Scheme of assimilation system based on nudging

Namelist variable	DA-M 07	RU 07 km		grid	OBSERVATIONS wind_10m,	
data_ini	GME — 3 h	DA-M 07				pmsl, Td 2m
data_bd	GME — 3 h	GME + 0 h				(TEMP,
hstop	3	78	domain	model	T_2m (TEMP)	SYNOP)
number of runs	8	4	ETR07	434.000	119	2700
cut-off time	02:35:00	02:50:00	CFO02	197.400	10	190
		-	SFO02	197.400	6	170
nnuagena	1	4	VFO02	211.500	9	161
DA ni		nudgcast	ENA13	500.000	295	4368
			SIB13	90.000	78	1006

Model grids and used observations

Correction error temperature

Soil memory and influence of soil temperature to the T2m

Influence of temperature correction on convective precipitation

Total amount of precipitation 02.07.2014 00UTC+16hh

10.07.2014

GME T 40

Obs.: 18UTC 10.07.2014 precipitation = 0.1 mm,

thus in control exp., started from 09.07 00UTC+31...36 hh and control exp., started from 10.07 .2014 00UTC+ 6,7 hh precipitation were overestimated. In corrected exp. – better.

18.07.2014

Verification temperature at 2m, July 2014

Verification temperature at 2m. July 2014

Verification July 2014. CFO Dew point at 2m

Lead time, h

Verification July 2014. CFO Dew point at 2m

Verification July 2014. CFO wind speed at 10m

Verification July 2014. CFO Total cloud cover

Conclusions

- The "module correction" was tested and show good results: initial field of temperature can be improved, and quality of t2m forecast increases.
- The combination with the system of assimilation leads to improved temperature and dew point at the initial time.
- Estimates of the other fields (wind, pressure, cloud cover) are the same as that with field from data assimilation.
- In some cases convective precipitation can decreased or increased due to changes in temperature profiles. Large-scale precipitation configuration almost does not change.

Outlook

- Verification of precipitation (convective) for long period
- Experiments for winter season with snow cover
- Tuning coefficients, weights, number levels of correction
- Adjustment of dew point.

Thank you for your attention!