

Diagnostic cloud number concentration based on Tegen climatology and Segal/Khain aerosol activation parameterization

Ulrich Blahak (DWD)

1

- Implemented as one of two options to diagnose the cloud number concentration in the revised cloud radiation coupling scheme (the other is a constant number via namelist, similar to the 1-moment microphysics). Currently applies for grid-scale clouds only (SGS clouds are more difficult)
- → Idea: if we can do it in the radiation, why not also in the 1-moment microphysics? Influence on autoconversion process.
- This idea has been tested and is reported in this presentation.

Outline of the talk:

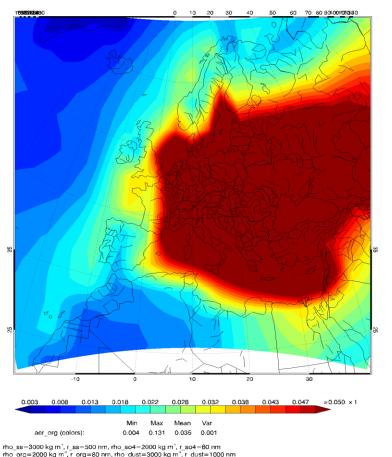
- General description of the method
- \rightarrow Effects in 1-moment microphysics (idealized + real case studies)

- Tegen et al. (1997): total optical thickness for 5 different aerosol categories: sea salt, SO4, mineral dust, black carbon, organics (incl. black carbon)
- Because black carbon is included in organics, we can exclude it for our purpose \rightarrow
- Paper gives some informations on assumed specific extinction coefficients that allow an \rightarrow approximate back-calculation of grid-column total aerosol mass / m².
- Assumptions about aerosol mean mass radius and bulk density allows computation of total number / m²:

→ sea salt:	0.5 µm	3000 kg/m ⁻³
mineral dust:	1.0 µm	1000 kg/m ⁻³
→ SO4	0.08 µm (sensitive!)	2000 kg/m ⁻³
organics:	0.08 µm (sensitive!)	2000 kg/m ⁻³

- From this, assumption about vertical profile (exponential decrease above a well-mixed PBL) allows diagnosis of cloud nuclei number density (ncn) in 1/m⁻³ (see next slide)
- Assumption about soluble fractions: \rightarrow

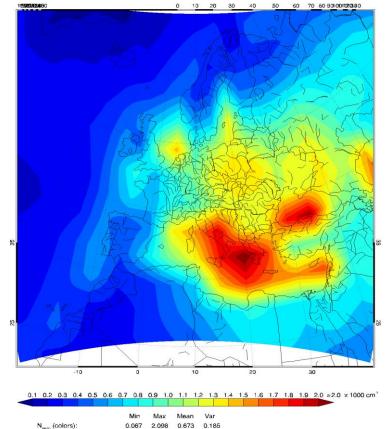
→ sea salt:	1.0
mineral dust :	0.1
→ SO4:	1.0
organics:	0.9


DWD

→ Vertical profile:

$$N_{NC}(z) = \rho(z) Q_{NC}(z) = N_{NC,0} \begin{cases} 1 & z \le z_t \\ \exp\left(\frac{(z-z_t) \ln 2}{6000 \text{ m}}\right) \exp\left(\frac{z-z_t}{z_{1/e}}\right) & z > z_t \end{cases}$$

with $N_{NC,0}$ in such a way that
$$\int_{z_{surf}}^{12 \text{ km}} N_{NC}(z) dz = N_{tot} , N_{tot} \text{ derived from } \tau_{aero}$$

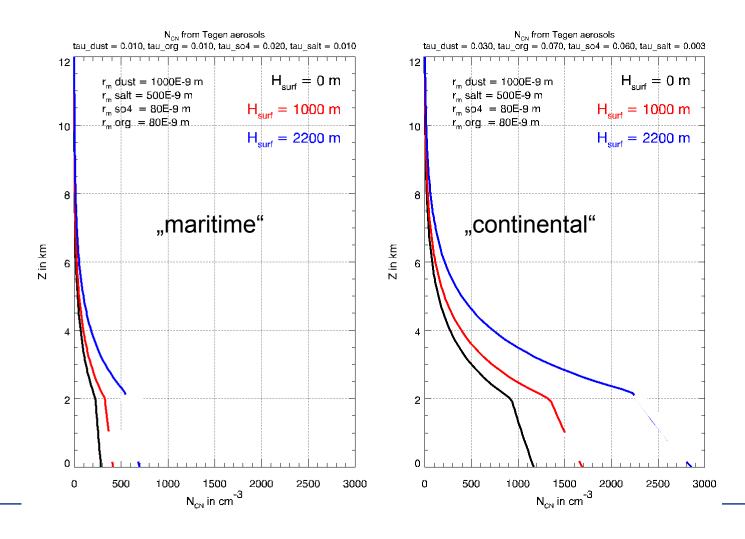


\rightarrow example: ave. opt. thickn. of organics and resulting PBL-value of N_{cn0} for July:

COSMO-EU: aer_org (optical thickness), month = 7

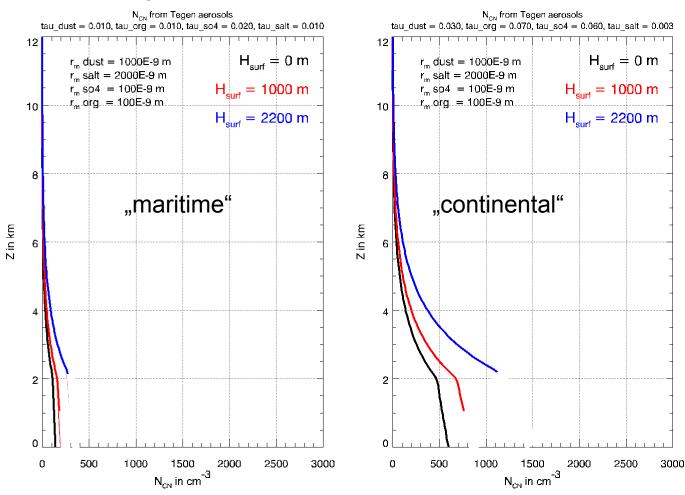
COSMO-EU: N_{aero} near the ground in 1000 cm³, month = 7

rho_ss=3000 kg m³, r_ss=500 nm, rho_so4=2000 kg m³, r_so4=80 nm rho_org=2000 kg m³, r_org=80 nm, rho_dust=3000 kg m³, r_dust=1000 nm



Tegen aerosol climatology

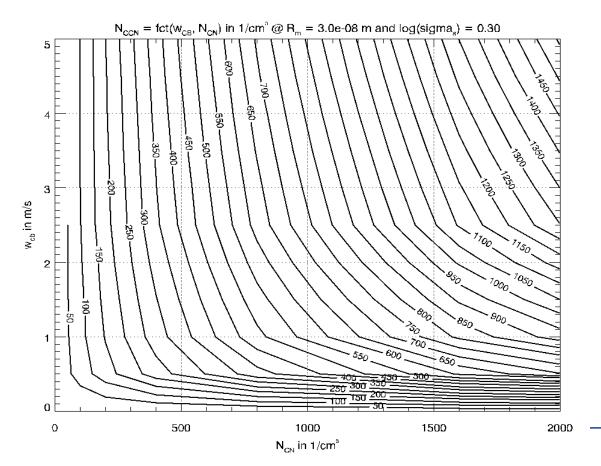
→ Vertical profiles and their dependencies: standard settings



Tegen aerosol climatology

 Vertical profiles and their dependencies: larger mean radii (most sensitive: organics + SO4)

Deutscher Wetterdienst Wetter und Klima aus einer Hand



qnc = Tegen + ...

... Segal/Khain activation parametr.

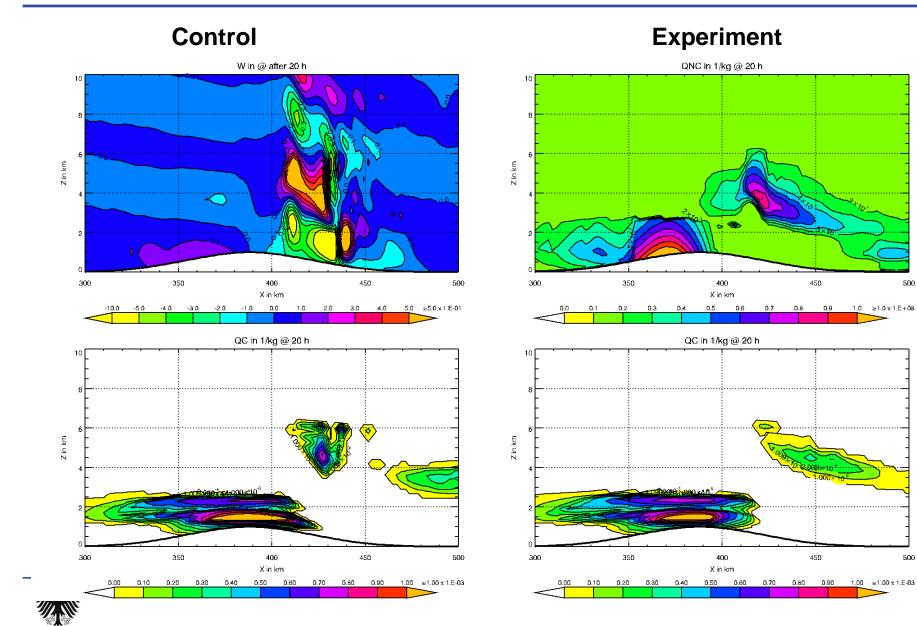
- Segal and Khain (2006) lookup-table, efficient bi-linear interpolation as function of cloudbase updraft speed (w_{cb}) and aerosol number density (N_{CN}).
- Involves vertical cloud-base search in continuous cloud layers and vertical exponential decrease within "active" clouds, parameterizing autoconversion, selfcollection and riming.

... and updraft speed

- → Equivalent updraft speed for aerosol activation accounts for:
 - → grid scale updrafts
 - → mean turbulent SGS updrafts
 - → radiative cooling

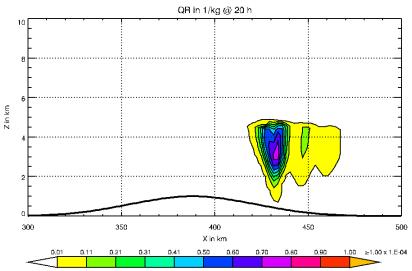
$$w_{cb}^{k} = w_{grid}^{k+1} + \alpha \sqrt{\frac{\text{TKE}^{k+1}}{3}} - \frac{c_{pd}}{g} \left. \frac{\partial T^{k}}{\partial t} \right|_{radiation}$$

 $\alpha = 0.7$ (tentative factor due to skewed updraft PDF)

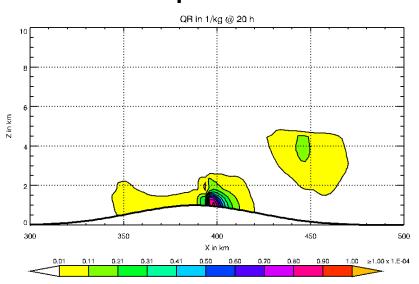

- → Moist mountain wave flow simulation with idealized COSMO:
 - → U = 10 m/s, H_{hill} = 1000 m, $D_{1/2}$ = 80 km, dTdz ~ 0.6 K/100m
 - → initially 4-layered atmosphere:
 - →dryer PBL (RH=80 %, dTdz = 0.6 K/100 m)
 - →moist layer (1 5 km, RH = 95 %, dTdz = 0.5 K/100 m)
 - \rightarrow dryer mid-troposphere (RH = 50 %, dTdz = 0.6 K/100 m)
 - → stable and dry tropopause layer from 12 km up to model top = 15 km
- Control run: standard graupel scheme, qnc = cloud_num = 500 kg⁻³
- Experiment: qnc from Tegen and Segal/Khain for a maritime aerosol scenario

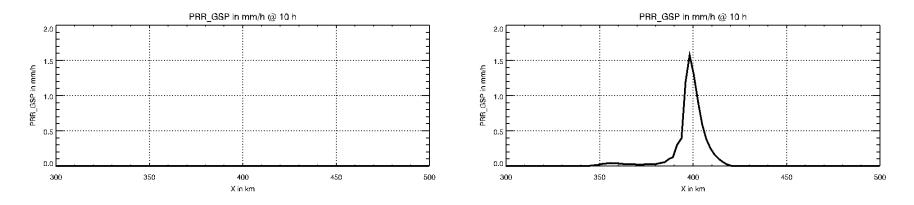
Effect on pure orographic warm rain

Deutscher Wetterdienst Wetter und Klima aus einer Hand



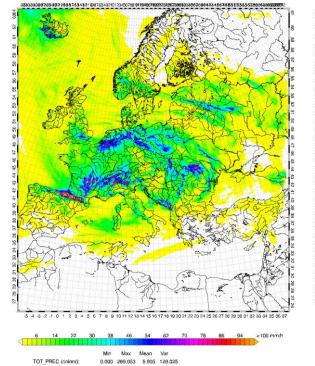
Effect on pure orographic warm rain

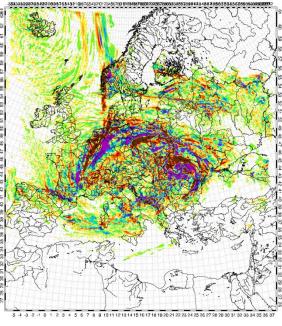

Deutscher Wetterdienst Wetter und Klima aus einer Hand



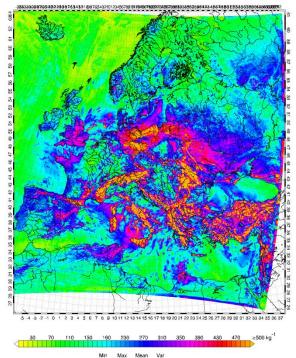
Control

Experiment




→ COSMO-EU 28.05.2013

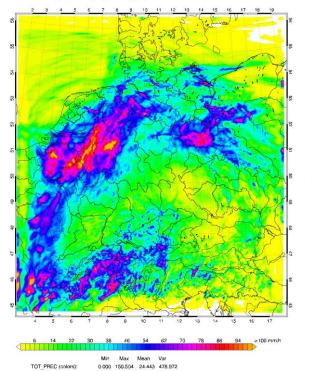
TOT_PREC, itype_clnum_gscp = 1, 2013052800 +0412 ddhh

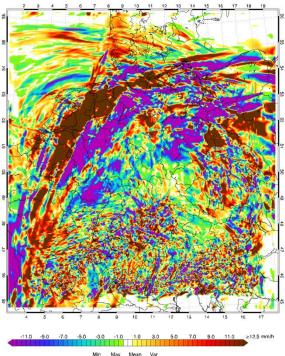

/home/ublahak/LM/ERGEBNISSE/DWD/Ime_V501_2013052800_REFF_gscp-3_qfact-0.5_zsexfac-0.01_irad-1_iaer-2_reinic-5e-6_i

Diff. TOT PREC, itype clnum gscp = 2 minus 1, 2013052800 +0500 ddhh

-110 -90 -7.0 -5.0 -3.0 -1.0 1.0 3.0 5.0 7.0 9.0 11.0 ≥12.5 mm/h Min Max Mean Var TOT_PREC (colors): -120.703 101.492 0.020 15.730

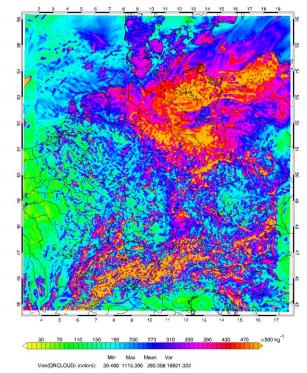
Max(QNCLOUD), itype_clnum_gscp = 2, 2013052800 +0218 ddhh


/home/ublahak/LM/ERGEBNISSE/DWD/Ime_V501_2013052800_REFF_gscp-3_qfact-0.5_zsexfac-0.01_irad-1_iaer-2_reinic-5e-6_i



→ COSMO-DE 28.05.2013

TOT PREC, itype clnum gscp = 1, 2013052800 +0500 ddhh

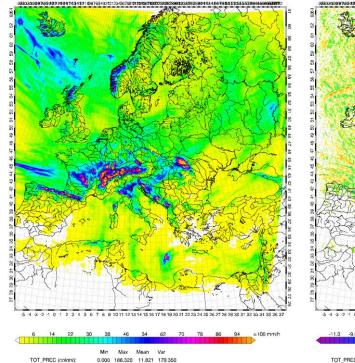

Diff. TOT PREC, itype clnum gscp = 2 minus 1, 2013052800 +0500 ddhh

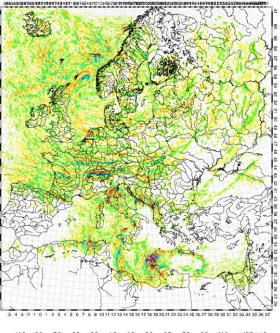
-92.687 117.242 -0.143 104.780

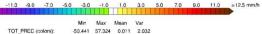
TOT PREC (colors):

Max(QNCLOUD), itype clnum gscp = 2, 2013052800 +0218 ddhh

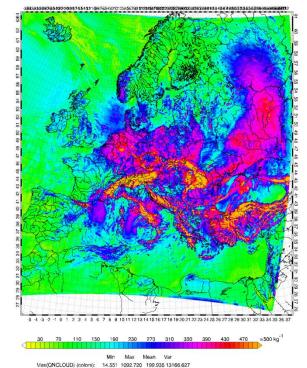
/home/ublahak/LM/ERGEBNISSE/DWD/Imk_V501_2013052800_REFF_gscp-4_qfact-0.5_zsex/ac-0.01_irad-1_iaer-2_reinic-5e-6_i


/home/ublahak/LM/ERGEBNISSE/DWD/lmk_V501_2013052800_REFF_gscp-4_qfact-0.5_zsexfac-0.01_irad-1_iaer-2_reinic-5e-6_i




→ COSMO-EU 01.02.2013

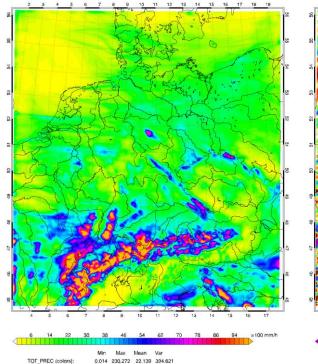
TOT_PREC, itype_clnum_gscp = 1, 2013020100 +0500 ddhh

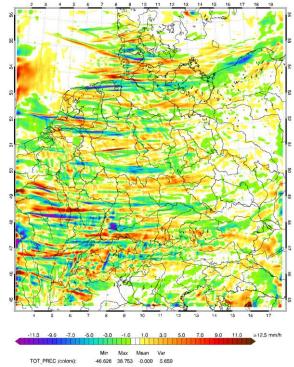


Diff. TOT_PREC, itype_clnum_gscp = 2 minus 1, 2013020100 +0500 ddhh

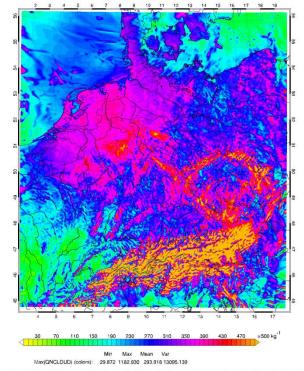
Max(QNCLOUD), itype_clnum_gscp = 2, 2013020100 +0218 ddhh

[/]home/ublahak/LM/ERGEBNISSE/DWD/Ime_V501_2013020100_REFF_gscp-3_qfact-0.5_zsexfac-0.01_irad-1_iaer-2_reinic-5e-6_i


[/]home/ublahak/LM/ERGEBNISSE/DWD/Ime_V501_2013020100_REFF_gscp-3_qfact-0.5_zsexfac-0.01_irad-1_iaer-2_reinic-5e-6_i



→ COSMO-DE 01.02.2013


TOT_PREC, itype_clnum_gscp = 1, 2013020100 +0500 ddhh

Diff. TOT_PREC, itype_clnum_gscp = 2 minus 1, 2013020100 +0500 ddhh

Max(QNCLOUD), itype_clnum_gscp = 2, 2013020100 +0218 ddhh

/home/ublahak/LM/ERGEBNISSE/DWD/lmk_V501_2013020100_REFF_gscp-4_qfact-0.5_zsexfac-0.01_irad-1_iaer-2_reinic-5e-6_i

/home/ublahak/LM/ERGEBNISSE/DWD/lmk_V501_2013020100_REFF_gscp-4_gfact-0.5_zsexfac-0.01_irad-1_iaer-2_reinic-5e-6_i

- Enables more realistic simulation of the warm-rain process. Previously, this process was nearly shut off by choice of a too large cloud_num.
- ➔ For maritime warm-rain dominated precipitation the precipitation singnificantly increases. Previously there were reports of much too low precipitation in such cases (e.g., coastal orographic rain at Salalah, Indian Ocean coast of Oman)
- ➔ For mid-latitudes: moslty upstream shift of precipitation. Previously, the warm rain process was virtually shut off, but precipitation was instead formed equally efficient via ice phase processes.
- ➔ If this cloud number concentration parameterization is used for cloud effective radii in the radiation, it can be as well used for the 1-moment microphysics at no additional cost.
- → Code is currently only contained in the test version 5.1 for the revised cloudradiation coupling.

