

Deutscher Wetterdienst Wetter und Klima aus einer Hand

COSMO-ICON Physics

Current Status and Plans

Ulrich Schättler Source Code Administrator COSMO-Model

Contents

- ➔ Framework for copy to / from block data structure
- Common COSMO-ICON Microphysics
- Status of the other packages
- ➔ Work to integrate the next packages into COSMO
- Problematic Issues
- ➔ And even more Questions

Framework for copy to / from block data structure

- ➔ The data structure for the parameterizations is 2D (nproma, nlevel), while the COSMO-Model has a 3D data structure (i,j,nlevel)
- In a first version, a rather simple framework for copying data was implemented: just DO-loops including all necessary variables:
 - variable_b (iv, ik) = variable (i,j,ik) (and vice versa after the physics)
- ➔ In spring 2014, MCH implemented a more sophisticated strategy (now used in COSMO-Model 5.1):
 - CALL register_copy (variable, variable_b)
 - CALL copy_to_block (...), CALL copy_from_block (...)

Common COSMO-ICON Microphysics

- → Combined latest changes in COSMO microphysics and ICON microphysics:
 - cloud ice sedimentation
 - sticking efficiency and evaporation
 - supercooled liquid water and reducing freezing rate
- Changes tested and verified in COSMO and ICON. Supercooled liquid water effects are not positive in ICON, therefore implemented a namelist switch.
- But some recent modifications not yet activated in either application (e.g. treatment of cirrus clouds)
- → Removed NEC-optimizations for better vectorizations ("index loops"): But this was not beneficial in ICON, where a slow-down of about 5 % was observed.
- Implemented interface routine gscp_interface.f90 to call all 4 microphysics versions now in blocked data structure (kessler and hydor not yet tested, but only used in idealized simulations)

Status of the Other Packages: Turbulence

- Prognostic TKE scheme
 - → ICON code will be implemented in COSMO as part of PT ConSAT by the end of 2014
 - → ICON code contains (active) modifications/extensions which influence the results compared to COSMO considerable (e.g. stability dependent minimum diffusion coeffcient)
- What about (old) diagnostic scheme?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Status of the Other Packages: Cloud Cover Scheme

Partíal cloud cover scheme

- → ICON employs a recent development by M.Köhler, whereas COSMO operates actually two schemes depending on the target parameterisation
- → for radiative transfer partial cloud cover is determined on the basis of layer mean relative humdity and/or convective activity
- \rightarrow for turbulence partial cloud cover is derived from a statistical approach based on Sommeria&Deardorf
- no efforts have been made or ressources allocated to transfer the ICON approach to COSMO (or vice versa)

Status of the Other Packages: Convection

- ➔ Tiedtke Scheme
- Shallow convection scheme
- ➔ ICON convection scheme (Bechtold)
 - differs considerably from COSMO Tiedtke scheme (although based on the later)
 - no efforts have been made or resources allocated to transfer Bechtold scheme to COSMO (a CCLM implementation exists, but not in blocked data structure)

Status of the Other Packages: Radiation

- → Ritter-Geleyn Scheme
 - Jusage of coarser grid does not fit into the actual "copy to / from" implementation
 - major developments regarding the interaction between cloud microphysics and the RT scheme have been done in COSMO (U.Blahak) using the RG92 scheme as basis (but not yet operational)
- → RRTM
 - ICON employs RRTM as default radiation scheme
 - no efforts have been made or resources allocated to transfer the RRTM scheme to COSMO

Status of the Other Packages: Surface Schemes

- Soil Model, including lake and sea ice model:
 - ICON and COSMO employ the same schemes for the simulation of soil processes, lakes and sea ice.
 - but soil model TERRA (incl. multi-layer snow model) modified in ICON
 - \rightarrow code structure of ICON versions closely linked to the tile approach, i.e. routines are only called for those grid points with the corresponding soil state.
 - This requires an adaptation (or additional copy) for the "copy to / from" implementation.

Status of the Other Packages: SSO Scheme

→ ICON and COSMO use an identical scheme based on Lott & Miller

Work to Integrate the next Packages into COSMO

- Generic work to do:
 - \rightarrow include necessary variables in the "copy to / from" framework
 - develop and implement the COSMO interface routines. This includes the option to choose between existing schemes used in COSMO and those that are so far only present in ICON.
 - \rightarrow compute non-1d-contributions to physics input in the interface routines.
 - thorough testing of pure technical adaptations in the COSMO environment (e.g. with regard to result neutrality, performance, etc.) in conjunction with the new interface
- provide a concept for future COMMON source code maintenance
- solve potential coding rule and source code management conflicts

Work to Integrate the next Packages into COSMO

Specific work to do:

- \rightarrow evaluate modified (turbulence) or new (convection/radiation) schemes in COSMO applications (NWP, CLM)
- transfer developments in the COSMO branch (e.g. U.Blahaks cloudradiation modifications) to ,new' physics schemes (e.g. RRTM)

Problematic Issues

- ➔ For which architecture, processor, compiler do we optimize?
- ➔ "copy to / from" framework:
 - → copy one line of grid points and call all schemes for these grid points.
 - Cannot work on a coarser radiation grid or on the surface grids in that way.
 - Could we also copy the whole fields and then call the schemes one after the other? This way it is done in ICON.

And more Issues to Consider

- → How to handle the source code for the common COSMO-ICON physics:
 - → As a stand-alone library?
 - With implementations in both repositories?
- ➔ Provide a concept for future COMMON source code maintenance.
- ➔ Solve potential coding rule and source code management conflicts.
- ➔ There are more things to unify:
 - Mathematical and physical constants
 - → Meteorological functions
 - → KIND parameters (already started with KIND parameters for real variables)

Deutscher Wetterdienst Wetter und Klima aus einer Hand

About Resource Planning

We definitely need Horst!

Thank you very much for your attention