COSMOGR(7&2) vs IFS over Greece

Dimitra Boucouvala, Flora Gofa

WG5 Parallel Session, COSMO GM, Eretria 2014

Contents

1. Comparison of COSMO, COSMOHR and ECMWF(IFS) seasonal performance for JJA 2013- MAM 2014 – conditional tests

2. COSMO Upper air data performance for 2011-2012

3. COSMO Weather Dependant Verification over a period of 20 months(in progress)

COSMOGR (Vers. 4.18) Grid Area

PRESSURE REDUCED TO MSL COSMO COSMOHR ECMWF

PRESSURE MSL > mean COSMO ECMWF

PRESSURE MSL < mean COSMO ECMWF

2m Temperature Daily Cycle (Day 1) OBS COSMO COSMOHR ECMWF

2m TEMPERATURE ME/RMSE COSMO/COSMOHR/ ECMWF

CONDITIONAL 2m T ME/RMSE COSMO/COSMOHR/ ECMWF

T2m > 30°C

TEMPERATURE AT 2M <10 - 00 Run Stratification : All Greek Stations - Period: DJF 2013-2014 5.0 p ME COSMOGR - CND 4.5 ME COSMOGRHR - CND ME ECMWF-final - CND 4.0 RMSE COSMOGR - CND 3.5 RMSE COSMOGRHR - CND RMSE ECMWF-final - CND 30 2.5 2.0 0 1.5 Measury 0.5 2 0.0 100S 0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 Step

Night values not to trust due to low number of cases. Better performance for COSMO RMSE (2) and ME close to 0 during daytime RMSE hysteresis comparable to no condition. ECMWF performs better in daytime with slight overestimation

T2m < 10°C

T2m Scatter plots Summer 2013 12 UTC (36 h of simulation)

T2m Scatter plots Winter 2013 12 UTC (36 h of simulation)

CLOUD COVER ME/RMSE COSMO/COSMOHR/ ECMWF

Conditional T2m CC > 75% (obs) ME/RMSE COSMO/COSMOHR/ ECMWF

Overcast: Better performance for COSMOHR. Small diurnal variation for COSMO, ECMWF diurnal variation and underestimation at night. (winter and spring)

Conditional T2m CC < 25% (obs) ME/RMSE COSMO/COSMOHR/ ECMWF

<u>Sky clear</u>: COSMO ME diurnal variation, with daytime underestimation. Winter Hysteresis RMSE similar to T2m.

100 m - 1 - 1 - 1 - 1 - 1 - 1

Conditional T2m based on OBS and OBS+FCST COSMO/COSMOHR/ ECMWF

10m WS Daily Cycle OBS/COSMO/COSMOHR/ ECMWF

10m WS >10Kt ME/RMSE COSMO/COSMOHR/ ECMWF

Conditional WS >5Kt COSMO/COSMOHR/ ECMWF based on OBS WD

12h PRECIPITATION FBI WINTER PLOTS BY STEP

Overestimation for low thresholds- bigger for ECMWF. Underestimation for high thresholds bigger for COSMO. Not significant change with simulation time.

12 h PRECIPITATION POD WINTER PLOTS BY STEP

ECMWF Better POD for low thresholds. Similar POD for high thresholds

100 m - 1 - 1 - 1 + 1 + 1

12h PRECIPITATION FAR WINTER PLOTS BY STEP

COSMO lower FAR increasing with time. ECMWF lower FAR for threshold 1. High values for threshold 20.

12h PRECIPITATION ETS WINTER PLOTS BY STEP

ECMWF better ETS for threshold 1. Similar values for low thresholds for COSMO

(7) Townslatestilles one

12h PRECIPITATION PERFORMANCE DIAGRAMS 0.2mm

o step 12 o step 24 o step 36 o step 48 o step 60 o step 72

Smaller Bias for COSMO. Better POD for ECMWF. Sample uncertainity COSMOHR. Time variability smaller for ECMWF.

(P) Townshitted (Inc. on a

Summarizing....

✓ <u>Pressures</u> : RMSE increases with time mainly for COSMO, winter and low pressures, ME+ for COSMO, ME- ECMWF

✓ <u>Temperature</u>: Daytime values underestimated mainly in winter. COSMOHR best, ECMWF better in winter daytime. ECMWF smaller diurnal ME variation. RMSE model hysteresis in winter.

✓ For T > 30 COSMOHR is better for daytime, for T <10 model hysteresis

✓ For <u>Overcast conditions</u> the ME diurnal variation is bigger for ECMWF, the opposite for Sky Clear Conditions. No significant difference between condition based on OBS and OBS/FCST

✓ <u>Cloud Cover</u> is constantly underpredicted by ECMWF.

 \checkmark <u>Winds</u> are overpredicted at night, underpredicted in the day, COSMOHR better. When condition >10kt is applied, underprediction day and night. No significant dependence on wind direction.

✓ <u>Precipitation</u>: ECMWF overestimation of low thresholds, and better POD. COSMO lower FAR. Similar ETS values.

Upper Air Data

COSMOGR 2011-2012

(7) Tomolohoothilon com

UPPER AIR GEOPOTENTIAL ME MAE RMSE

UPPER AIR TEMPERATURE ME MAE RMSE

UPPER AIR WIND SPEED ME MAE RMSE

Weather dependent Verification...In progress

580 days classified in 12 Weather Regimes

COSMOGR

(7) Tomolotoottiloo com

and the second state of the second state

Weather Classification: 01/09/2009-31/12/2011=580day

Percentage of weather regimes

HNMS Activity started in 2013

Issue of a Report for Greek forecasters using ECMWF and COSMO models with description of guidelines and model comparison for every season with monthly and seasonal verifications.

Thank you !

