

WG4CORSO

Data assimilation system based on nudging for COSMO-Ru7/Ru2

<u>Denis Blinov,</u> Gdaly Rivin, Inna Rozinkina, Anastasia Revokatova

Outline

- Motivation
- Data Assimilation System (DAS) based on nudging
 - Initial conditions for COSMO-Ru
 - Observation
 - Configuration
- Verification for period 1 February 16 March
 - PMSL
 - Wind Speed at 10m
 - Dew point at 2m
 - Temperature at 2m
 - Standard verification
 - Clear and clod weather
 - Problem with temperature in PBL and soil
 - Comparison with DAS from DWD
- Conclusions
- Future plans

Disadvantages of using initial data from global model GME

- Sometimes initial data from GME have significant errors for temperature at surface and T_PBL for domain COSMO-Ru;
- Often this error lead for big errors in all time forecast;
- Low resolution is no good for nowcasting;
- Errors in the initial data associated with all 3 types of fields: external parameters, atmospheric and surface fields;

Errors of initial conditions

Verification T_2m for Sochi coastline stations (Adler-cluster); model COSMO-Ru2; 00, 06, 12, 18 UTC runs; for winter 2011/2012 (left) and 2012/2013 (right)

Score: RMSE, Polygon: ADLER_COAST Method: UW_MEAN RMSE, Polygon: ADLER_COAST Method: UW_MEAN 000000 060000 120000 000000 060000 120000 180000 ŝ **RMSE** 2 S 15 16 17 18 19 20 21 10 11 12 13 14

Data Assimilation System (DAS) for COSMO-RU prepare initial conditions (IC) from the interpolated data GME (h=20 km) and from nudging scheme assimilation are concluded:

Data assimilation system

- atmosphere fields (U, V, P, W, T, QV);
- soil fields (T_SO, W_SO, T_S);
- snow analyses (T_SNOW, H_SNOW, T_S);
- ✤ sea surface temperature (T_ICE, H_ICE, T_S).

external parameters.

- The scheme Nudging in Cosmo is correcting atmosphere fields T, PS, H, QV, U, V
- DAS uses observations SYNOP, TEMP, SHIP, BUOY, AIREP, RASS
- On first step DAS is based on 6 hour cycle Main Run (MR)
- On the next step DAS will included on continuous cycle Recalculate Run (RR) for Cosmo-Ru2
- Cold start for COSMO-Ru2 run from 16 October 2013

Scheme of assimilation system

6

Parameters	DA-M Ru7	DA-R Ru2	DA-M Ru2
data_ini (U, V, P, W, T, QV)	GME — 6 h	DA-R — 6 h	DA-R — 6 h
data_bd	GME — 6 h	Ru7 — 6 h	Ru7 — 6 h
data_ini_surf (T_S, T_SNOW, T_ICE, H_ICE, T_SO, W_SO)	GME — 6 h	GME — 6 h	GME — 6 h
hstop	6	6	6
number of runs	4	4	4
cut-off time	02:45	06:50	01:10
hnudgend	10	10	10
synop	2600	145	145
temp	119 GM_WG_CORSO_8.5	6	6

Model grids and used observations

The number of grid points of the model COSMO-Ru7 more than stations in ~1600 for the temperature and ~32000 for COSMO-Ru2.

Not enough of upper-air stations for successfully correcting temperature. You must use t_2m observation from SYNOP.

GM, WG CORSO, 8 September 2014

Names of experiments for COSMO-Ru:

das7, das2 (forecast with IC from DAS)

- ref7, ref2 (forecast with IC from GME)

Period testing:

1 February 2014 – 16 March 2014 also February 2012, July 2012, December 2012

Selected stations for verification

Name	Number of stations	Area
EU1845	1845	domain COSMO-Ru7
SFO02	145	domain COSMO-Ru2
SFO01	65	domain COSMO-Ru1 (coastline and mountain near Olympic object)

Model overview

COSM C

Mean Error and RMSE of the **PMSL** for 145 stations of domain COSMO-Ru2

Mean Error and RMSE of the wind speed at 10m

Mean Error and RMSE of the dew point at 2m

for stations of domain COSMO-Ru2

Mean Error and RMSE of the **temperature at 2m** For 145 stations of domain COSMO-Ru2

Time forecast from 00UTC (1 Febuary 2014 - 16 March 2014)

Mean Error and RMSE of the temperature at 2m for 145 stations of domain COSMO-Ru1

Time forecast from 00UTC (1 Febuary 2014 - 16 March 2014)

Summary conclusion: ME and RMSE better for experiments **DAS** for all selected stations and for all models (Ru7 and Ru2)

Mean Error and RMSE of the temperature at 2m for clear sky (top) and cloud weather (bottom) for 145 stations of domain COSMO-Ru2

Verification T_2m

Experiments with DWD assimilation and without for COSMO-Ru7, February 2012, for 145 station of domain COSMO-Ru2 (SFO)

16.02.2014 12:00

16.02.2014 18:00

17.02.2014 0:00

17.02.2014 6:00

15.02.2014 12:00

15.02.2014 18:00

16.02.2014 0:00

16.02.2014 6:00

Verification T_2m

Temperature profile for

KrPolyana(left) and Sochi(right)

Verification T_2m

Errors in field temperature

- The daytime temperature is underestimated for all terms and for all seasons;
- Such behavior is often observed in clear weather and strongly stable stratification. Probably this is the model errors connected with physical parametrizations;
- In result T_S and T_PBL colder than initial data from GME. Because of this temperature at 2m sometimes better from IC of GME than DAS.
- On a 12-h forecast error temperature is minimal in GME, because for initial data of GME exist surface analyze.

Conclusions

- Mainly large errors for the beginning of the forecast disappear;
- Fields T_2m, Td_2m, PSML, Wind Speed 10m is better with DAS in 0-3 hours forecast time;
- For any cases initial conditions for T_PBL, T_S in DAS is not so good in clear weather. It is necessary to correct/change the temperature of the soil (T_SO) and Planetary boundary layer (T_PBL), because not enough upper-air stations, especially for the mountain regions;
- It is necessary to use more observations and analyzed scheme.

Future Plans

- Use more observation (RASS, Wind profilers) for nudging
- Use radar data for Latent Heat Nudging
- Use Flake in DAS
- Use «Module of Correction» (RHM) for correction T_SO and T_ PBL using T_2M observations

Future Plans

Map Russian DMRL

from 2014-09-02 (http://orm.mipt.ru/RAD/dmrl.html)

For European part of Russia exist more 10 DMRL and will be even more. Soon we will have operative digital radar data. But we need interpolation software.

Future Plans

«Module of Correction»

- Observations T_2m and model T_PBL are used for preparing analyze field T_2m for grid COSMO-Ru
- Method Cressman is used for horizontal spreading increment observation
- Corrected fields of soil temperature and temperature in PBL
- Correction helped to get better result for Moscow region in February 2012
- Now the module is tested. Results of experiment are evaluated.
- Need coupling with DAS

Acknowledgement

Christoph Schraff (DWD) for help and consultation about nudging scheme;

Jochen Foerstner (DWD) for help, advice about DAS and data of experiments with DAS for COSMO-Ru7;

Alexandr Kisanov (HMC), Anastasia Bundel (HMC), Mihail Nikitin (HMC) for help in verification of results experiments.

Thank you for attention!

