

Evaluation of the ground heat flux simulated by a multi-layer land surface scheme using high-quality observations

Jan-Peter Schulz^{1,3,*}, Gerd Vogel², Claudia Becker² and Bodo Ahrens³

¹Biodiversity and Climate Research Centre (BiK-F), Frankfurt ²Deutscher Wetterdienst, Lindenberg ³Goethe University Frankfurt

*Affiliation now: Deutscher Wetterdienst, Offenbach

COSMO General Meeting, 8 - 11 Sep. 2014, Eretria, Greece

The problem ...

- The ground heat flux in the COSMO land surface scheme TERRA is systematically overestimated under dry conditions.
- Since this flux is part of the surface energy balance it affects the other components like the turbulent heat fluxes or the surface temperature.
- An overestimation of the ground heat flux during daytime leads to an underestimation of the other surface fluxes and a reduced surface warming.
- During afternoon and night this behaviour is reversed.

Soil temperature (-6 cm) : July 2009

Cardington

Schulz et al.: Ground heat flux

Soil temperature (-6 cm) : July 2009

45

Observations from SRNWP data pool

Soil temperature (-6 cm) : July 2009

Toulouse (Fauga-Mauzac)

Observations from SRNWP data pool

Hypothesis

The ground heat flux in the COSMO model is systematically overestimated in summer. Main reasons:

- The shading effect of the vegetation is not represented in the model
- The thermal conductivity of the soil is too large in summer

Methodology

- Focus on thermal conductivity first
- Reduce the thermal conductivity of the soil in summer, by introducing its strong dependence on the soil water content

Thermal Conductivity

The thermal conductivity of water is about a factor of 25 larger than that of air!

This means, replacing the air in the pores of a soil by water increases the thermal conductivity of the soil system dramatically.

In other words:

A wet soil (in winter) has a much larger thermal conductivity than a dry soil (in summer).

Baier (2008), after Frivik (1981)

Thermal Conductivity depends on soil moisture

Saturation	All pores are filled with water	- thermal conductivity high!
Field capacity	Pores fill with air	- conductivity lower.
Permanent		
wilting point	Thin water films held by adhesion	 conductivity very low!

http://www.terragis.bees.unsw.edu.au/terraGIS_soil/sp_water-soil_moisture_classification.html

Land surface scheme TERRA

Layers for temperature and soil water content

Experiments:

- Introduce soil thermal conductivity dependence on soil water content
- Use atmospheric forcing to run TERRA in offline mode
- Here, observed forcing from DWD observatory Lindenberg is used (Falkenberg site)

Thermal Conductivity

In the soil component of the COSMO model, the multi-layer TERRA scheme, the thermal conductivity is constant in time. It represents a medium soil wetness, shown by the **blue line** in the figure.

The red and black curve show two other approaches, relating thermal conductivity to soil water content:

Johansen (1975)

McCumber and Pielke (1981)

Curves were computed for the mean soil moisture profile for Falkenberg on 1-16 Jul. 2010 in offline TERRA.

Offline TERRA: Falkenberg July 2010 Grass land

The simulated surface solar radiation balance agrees well with the observation (grass albedo = 0.18).

Offline TERRA: Falkenberg July 2010

Grass land

- First half of July
 2010: Soil column
 very dry
- Two rain events in second half
- Changes in soil moisture are reflected in thermal conductivity

Offline TERRA: Falkenberg July 2010 Thermal conductivity: Johansen Grass land

The diurnal cycles of the ground heat flux are reduced by Johansen under dry conditions and fit better to the observation.

Offline TERRA: Falkenberg July 2010 Thermal conductivity: McCumber and Pielke Grass land

The diurnal cycles of the ground heat flux are even more reduced by McCumber and Pielke under dry conditions.

Offline TERRA: Falkenberg July 2010 Thermal conductivity: Johansen Grass land

The diurnal cycles of the soil temperature are reduced by Johansen under dry conditions.

Offline TERRA: Falkenberg July 2010 Thermal conductivity: McCumber and Pielke Grass land

The diurnal cycles of the soil temperature are too much reduced by McCumber and Pielke under dry conditions.

Shading

In TERRA the effects of shading of the sub-canopy land surface by the vegetation is not represented. The incoming solar radiation is directly used in the surface energy balance, modifying the other energy terms in an unrealistic way.

Falkenberg bare soil measurement site

23 Apr. 2002

30 Apr. 2003

- Measurement of soil temperatures under bare soil
- Shading avoided
- About 1 m² in the middle of meadow
- Now comparison of temperatures under grass land and bare soil possible

Offline TERRA: Falkenberg 2 - 4 July 2010 Thermal conductivity: Johansen

- Diurnal temperature range reduced by Johansen by about 2°C
- Compared to bare soil measurements this is very good
- Shading (even by grass) has a huge effect

Offline TERRA: Falkenberg July 2010 Thermal conductivity: Johansen

- Measurements: Average diurnal temperature range (DTR) reduced by shading from 11.62°C to 5.84°C
- Day 182-197: Dry period, DTR reduced by Johansen by about 2°C
- Day 200-204: Soil column getting wet, DTR increased by Johansen by up to 2°C
- Beyond day 205: Wet period, both model versions and observation become similar

Conclusions

- Ground heat flux in COSMO model is systematically overestimated under dry conditions.
- Affects other components of the surface energy balance like turbulent heat fluxes or surface temperature in terms of phase or amplitude of their diurnal cycles.
- Two approaches by Johansen (1975) and McCumber and Pielke (1981) for a soil thermal conductivity being dependent on soil moisture were tested. The first one leads to better results and appears to be favourable.
- > A representation of the shading effect in the model needs further attention.

The source of one figure in this presentation is the COMET® Website at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR), sponsored in part through cooperative agreement(s) with the National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce (DOC). ©1997-2011 University Corporation for Atmospheric Research. All Rights Reserved.