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Motivation I

Let H be the observation operator mapping the state ϕ onto the measurements

f . Then we need to update or find ϕ using the equation

H(ϕ) = f ,

where H−1 is unstable or unbounded. When we have some initial guess ϕ(b),

we transform the equation into

H(ϕ− ϕ(b)) = f − Hϕ(b),

with the incremental form

ϕ = ϕ(b) + H−1(f − Hϕ(b)).
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Least Squares

In order to find out ϕ we should minimize the functional

J(ϕ) := ‖ϕ− ϕ(b)‖2
+ ‖f − Hϕ(b)‖2

.

The normal equations are obtained from first order optimality conditions

∇ϕJ = 0.

Usually, the relation between variables at different points is incorporated by

using covariances/weighted norms:

J(ϕ) := ‖ϕ− ϕ(b)‖2

B−1 + ‖f − Hϕ(b)‖2

R−1 ,

The variational update formula is now

ϕ(a) = ϕ(b) + BH∗(R + HBH∗)−1(f − Hϕ(b))
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Kalman Filter

In the Kalman filter method we calculate an analysis update by

ϕ
(a)
k = ϕ

(b)
k + B

(b)
k H∗(R + HB(b)H∗)−1(fk − Hϕ

(b)
k ) (1)

and an covariance update by

B
(a)
k = (I − KH)B

(b)
k , k = 1, 2, 3, ... (2)

with the Kalman Gain Matrix

Kk = B
(b)
k H∗(R + HB

(b)
k H∗)−1

and the weight or covariance matrix B evolves with the model dynamics M,

B
(b)
k+1 = Mk B

(a)
k M∗

k , k = 1, 2, 3, ... (3)
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Use Ensembles for Approximation

• Instead of running only one version of our dynamical system, we run L

different versions of it, which we call ensembles or particles.

• This is computationally expensive for the forward problem, but we will

save on the minimization needed for calculating the analysis.

• With the ensemble we can capture the uncertainty both in the model as

well as in the analysis!
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Ensemble Kalman Filter

The main idea of the Ensemble Kalman Filter is to approximate the B matrix

in all of its steps by an ensemble in the form B = QQ∗, when

Q :=
1√

L− 1
(ϕ(1) − µ, ..., ϕ(L) − µ)

with ensemble mean µ =
∑L

j=1 ϕ
(j). This is the standard unbiased

stochastic estimator for the covariance matrix.
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We need to propagate the ensemble through time. Starting with an ensemble{
ϕ
(l)
0 , l = 1, ..., L

}
, this leads to ensemble members

ϕ
(l)
k+1 = Mkϕ

(l)
k , k = 1, 2, 3, ...

This means that we solve the equation in a low-dimensional subspace

U(L) := span{ϕ(1)
k − µk , ..., ϕ

(L)
k − µk}.
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The update formula now is

ϕ
(a)
k = ϕ

(b)
k + Qk Q∗

k H∗(R + HQk Q∗
k H∗)−1(fk − Hϕ

(b)
k )

The updates of the EnKF are a linear combination of the columns of Qk . We

can therefore write

ϕk − ϕ(b)
k =

L∑
l=1

γl
1√

L− 1

(
ϕ
(l)
k − ϕ

(b)
k

)
= Qkγ

with coefficient vector γ ∈ RL. The resulting the expresion to minimize is

J(γ) := ‖Qkγ‖2
B−1

k
+ ‖fk − Hϕ

(b)
k − HQkγ‖2

R−1 .
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Ensemble updates?

A key question of ensemble methods is how to update the ensemble in the data

assimilation step. More precisely:

Given the data fk at time tk and an ensemble which approximates the

background matrix B
(b)
k , how do we get an analysis ensemble Q(a) which

approximates the analysis matrix B
(a)
k in the form Q(a)Q(a),∗?
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Ensemble updates?

We know that for the Kalman filter the analysis weight matrix B
(a)
k is calculated

from B
(b)
k by B(a) = (I − KH)B(b). In terms of the ensemble approximations

this means

Q
(a)
k (Q

(a)
k )∗ = (I − Kk Hk)Q

(b)
k (Q

(b)
k )∗ (4)

with the ensemble Kalman matrix

Kk := Q
(b)
k (Q

(b)
k )∗H∗

k (R + Hk Q
(b)
k (Q

(b)
k )∗H∗

k )
−1, (5)

Karlsruhe July 24, 2014 Roland Potthast 12



Ensemble Kalman Filter
EnKF, Extrapolation and Space-Geometry

EnKF, Ensemble-Shape and Non-Gaussianity
Localization and Generalized Localization

IASI Numerical Examples

Taking quare roots

We aim to determine Q
(a)
k such that

Q
(a)
k (Q

(a)
k )∗ (6)

= Q
(b)
k

{
I − (Q

(b)
k )∗H∗

k

(
R + HQ

(b)
k (Q

(b)
k )∗H∗

k

)−1
Hk Q

(b)
k︸ ︷︷ ︸

=:A

}
(Q

(b)
k )∗.

The term A in the curly brackets is self-adjoint. Further, it can be seen to be

positive, such that there is a square-root, i.e. matrix S with A = SS∗. This

finally leads to

Q
(a)
k = Q

(b)
k S. (7)
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Ensemble Kalman Filter: Summary

In the Ensemble Kalman filter method we calculate an analysis update by

ϕ
(a)
k = ϕ

(b)
k + Q

(b)
k Q

(b),∗
k H∗(R + HQ

(b)
k Q

(b),∗
k H∗)−1(fk − Hϕ

(b)
k ) (8)

and a covariance update by Q
(a)
k = Q

(b)
k S with S ∈ RL×L given by

S =

√
I − (Q

(b)
k )∗H∗

k

(
R + HQ

(b)
k (Q

(b)
k )∗H∗

k

)−1
Hk Q

(b)
k (9)

and the ensemble {ϕ(1), . . . , ϕ(L)} evolves with the model dynamics M by,

ϕ
(b,`)
k+1 = Mkϕ

(a,`)
k , ` = 1, ..., L, k = 1, 2, 3, ... (10)
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EnKF Extrapolation and Space-Geometry

1. What if all members do not have some particular feature?

2. Can the EnKF do extrapolation?

3. Can we do generic experiments to learn about these two questions?

The answer is:

• The EnKF cannot generate features which are not present at all. We need

to take care when we generate our ensemble.

• The EnKF can extrapolate. It will shift the ensemble towards the

observation.
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Experiments with Lack of Features (Space Dimension)
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Ensemble Shape and Non-Gaussianity

1. What is the EnKF with Square Root Ensemble Update doing to the

particular shape of an ensemble?

2. How is the EnKF treating non-Gaussianity? What happens for example to

bi-modal distributions?

3. Can we do generic experiments to learn about these two questions?

The answer is:

• The EnKF is keeping the shape of the ensemble, it is just scaling it in the

directions of the main axis of the B matrix.

• The EnKF can potentially deal well with non-Gaussianity, we need to be

careful about the scaling!
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Experiments with the Ensemble Shape
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Least Squares Analysis Model

To understand the role of localization, we study a simplified problem which is

characteristic for our analysis step in the EnKF.

• One dimensional model without cycling

• Least square estimation to obtain the analysis (LSA) and the truth is

given by a high-order function.

• The analysis is obtained using both all available observations and only a

local set.

• Estimation performed with and without background terms.

• Observations are generated from the truth with a specified observation
error σobs.

• Analysis approximated by straight lines a + bx (an ensemble of linear

functions).
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Example

Fig.1: Truth (blue line), observations (blue circles), background (green), no background LSA (red) and
background LSA (black) for σobs = 0.05 and different localization radii.
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Fig.4: Theoretical and numerical results for error as a function of ρloc , σobs = [0.0005 0.05 0.5].

• The optimal value of ρloc takes smaller values when σobs decreases.

• For large values of σobs the analysis without the background correction is

clearly worse than analysis considering the background.
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Idea of Localization I

• Carry out the ensemble analysis in subsets of the full spatial domain!

• Given a localization radius ρ > 0 the analysis at a point x this is

effectively using only observations at one point y with ‖x − y‖ ≤ ρ.
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Idea of Localization II

• Localization assumes that every free variable of our state ϕ is located at

some point x in physical space. If ϕ is a vector

ϕ =

 ϕ1
...

ϕn

 ,

and our space is R3, then this means we have a mapping

ϕj 7→ xj ∈ R3, j = 1, ..., n

• Localization can be carried out in different ways. Here, we consider the

full restriction of the analysis to some subset D, i.e. we take

observations into accout only if they are related to D and we construct a

solution only on D.
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Ensemble Kalman Filter
EnKF, Extrapolation and Space-Geometry

EnKF, Ensemble-Shape and Non-Gaussianity
Localization and Generalized Localization

IASI Numerical Examples

Instructive Example for the effect of Localization
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With Localization, ρ = 2
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With Localization, ρ = 2
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Ensemble at Beginning
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Ensemble after 2 steps without Localization
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Ensemble after 2 steps with Localization
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Localization for Non-Local Operators?

• Localization in state space cannot be good for non-local operators such

as

(Hϕ)(ν) =

∫ b

a

k(ν, z)ϕ(z)dz (11)

• Use a transformation of the spaces to make operators more local:

ϕ̃ = Tx, ỹ = Sy, H̃ = SHT−1 (12)

to transform Hx = y into

H̃ϕ̃ = SHT−1Tx = SHx = Sy = ỹ. (13)
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How does the LETKF behave under transformation?

Lemma

The transformed analysis increment K̃k(ỹk − H̃ϕ̃
(b)
k ) of the Ensemble Kalman

Filter for the transformed ensembles Q̃ is given by

K̃k(ỹk − H̃ϕ̃(b)) = TK(yk − Hxb
k ). (14)

The analysis ensemble is given by

Q̃
(a)
k = Q̃

(b)
k L̃ (15)

with a matrix L̃ which is the same as the update matrix L from the

non-transformed case, i.e. we have

L̃ = L. (16)
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Transformed Localization

If we denote the localized transformed matrix by B̃gl , this means we calculate

ϕ̃
(a)
gl := ϕ̃(b) + K̃k,gl(ỹk − H̃ϕ̃

(b)
k ), (17)

with

K̃k,gl := B̃gl H̃
∗(R̃ + H̃B̃gl H̃

∗)−1. (18)

According to our Transformation Lemma it is equivalent to

x
(a)
gl := x(b) + Kk,gl(yk − Hx

(b)
k ), (19)

with

Kk,gl = BglH
∗(R + HBglH

∗)−1 (20)

for Bgl = T−1B̃gl(T
∗)−1 in the original space, transformed into each other by

T and S.
Karlsruhe July 24, 2014 Roland Potthast 51



Ensemble Kalman Filter
EnKF, Extrapolation and Space-Geometry

EnKF, Ensemble-Shape and Non-Gaussianity
Localization and Generalized Localization

IASI Numerical Examples

Generalized Localization

• Understand localization as a projection method:

Hx = y

is replaced by

PjHx = Pjy

• Now employ a different family of projection operators Pj , where a

projection P̃j is combined with a transformation:

Pj := S−1P̃jS, PjHx = Pjy

If S is orthonormal, Pj is clearly a projection operator.
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Generalized Localization

• This leads to the equivalence

P̃j H̃ϕ̃ = P̃j ỹ

⇔ S−1P̃j(SHT−1)(Tx) = S−1P̃j(Sy)

⇔ PjHx = Pjy

Theorem

If the transformations S and T are orthonormal transformations of the space X

and Y , then the transformed localization and the generalized localization by

projection methods are equivalent.
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Atmospheric Temperature Profile ...
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Singular Values of H ...
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Reconstruction of Profile Difference, Different α ...
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Reconstruction of Profile Difference, Different α ...
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Numerics for Gaussian B Matrix ...

left: B Matrix from global LETKF, right: transformed B matrix
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