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Climate Simulations on GPU (ETH) 

(courtesy of David Leutwyler) 



•  Cray XC30 @ CSCS 
each node has one GPU and 
one CPU 

•  COSMO 4.18 + modifs 

•  European Domain @ 2.2 km 
Size 1536 x 1536 x 60 

•  144 nodes (only GPU used) 
40% of DWD’s XC30 

•  Time-to-solution is roughly 
0.2 SYPD 
~2 months for 10 years 

•  Allocation for ~50 years 
1.1 million nodehours  

Climate Simulations on GPU 



Finished 
•  HP2C COSMO-CLM (June 2010 – June 2013, 1 MCHF) 

•  HP2C OPCODE (July 2011 – June 2013, 0.5 MCHF) 

•  HP2C COCoNet (January 2012 – June 2013, 0.2 MCHF) 

New 

•  PASC GridTools (January 2014 – June 2017, 0.7 MCHF) 

•  SNF Sinergia (May 2015 – April 2018, 1.5 MCHF) 

Planned 

•  PASC Focused 

•  H2020 (ECMWF) 

Third-party funding 



Single precision (1/2) 

•  Will be in official version 5.1, activate with -DSINGLEPRECISION 
•  Runtime & memory consumption decreases significantly 

(~ 60% of double precision) 
•  Tested for COSMO-E 

•  But… 
•  Some parts don’t work yet (e.g. assimilation) or haven’t 

been tested (e.g. seaice) 
•  Developer behavior has to change 
•  Developers currently don’t run single precision 

•  Recommendation 
•  Read CNL! 
•  Validate your setup before using SP! 
•  Talk to us! 



Single precision (2/2) 

•  Verification of T2m at +5 days (1 month COSMO-E) 



Deutscher Wetterdienst 

Scalability of COSMO Components (incl. Comm.) 
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Deutscher Wetterdienst 

First Conclusions 
è  Scalability of COSMO-Model for COSMO-DE65 domain size is reasonably 

well up to 1600 cores. Dynamics and Physics also scale beyond up to 6400 
cores. 

è  Operational requirements for COSMO-DE65 ensemble can currently not be 
met 

è  This is not a problem of the scalability, but of some expensive components! 

è  Expensive Components: 

è New fast-waves solver is more expensive than old one (40-50% of 
dynamics time; but not investigated further up to now) 

è Communication in the Latent Heat Nudging  

è Additional Computations: is almost only in RTTOV10 

è  factor of about 10-15 compared to RTTOV7 
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Summary of POMPA 
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POMPA developments 

•  C++ Dycore 
•  Changes and bugfixes in 

Fortran dycore 
•  Static memory allocations 
•  Block module 
•  Block physics 
•  Serialization 
•  Single precision 
•  New communication 

interfaces 
•  New BC module 
•  Changes in BCs inside and 

after dynamics 

•  Code refactorings 
•  OpenACC directives 
•  Tracking and copying of 

boundary fields  
•  Re-ordering of microphysics 
•  Re-ordering of assimilation / 

relaxation 
•  Change of application 

domain in relaxation 
•  NetCDF I/O 
•  … 

 



Strategy 

•  Goal  GPU capable COSMO version 5.X delivered to SCA 
by December 2014 

•  Guideline  COSMO Coding Standards 

•  Path  WG chairs à SMC à SCA à Trunk 

•  Many changes to a large part of the code 

•  Keeping in sync with the latest repository head is an effort 

Conclusion 
•  In order to make this happen… 

We are dependent on code owners, SCA, WG chairs and 
SMC for their time and support! 

•  Bring changes back step-by-step 

•  Thanks to Uli (block, microph) and Christoph (assimilation)! 



GPU Acceleration (1/2) 

•  On track 
•  Not all namelist options will be supported for 5.X version 

(current focus COSMO-1) 
•  Not all output fields will be supported for 5.X version (e.g. 

CAPE) 
•  You require C++ dynamical core based on STELLA in order 

to run on GPU 

Conclusion 
•  Tell us your requirements! 
•  Send us your YUSPECIF! 
•  Talk to us! 



GPU Acceleration (2/2) 
Parts Status Delivery	
  /	
  

Required	
  work 
Remark 

Physics On-­‐going	
   18/09/2014 Only	
  turbulence	
  and	
  radia<on	
  s<ll	
  
on-­‐going. 

Fortran-­‐C++	
  interface On-­‐going 05/09/2014 First	
  version	
  working.	
  Modifica<ons	
  
on-­‐going. 

Dynamical	
  core On-­‐going 18/09/2014 Working.	
  Including	
  new	
  FW	
  solver.	
  
Some	
  features	
  for	
  C-­‐1	
  s<ll	
  missing. 

Assimila<on Ready	
  to	
  merge 1	
  day.	
  
On-­‐demand 

Tested	
  with	
  Cray,	
  problem	
  with	
  PGI	
  
No	
  LHN 

Communica<on Ready Use	
  GCL	
  for	
  GPU 

Structure	
  code	
  
(e.g.	
  ini<aliza<on,	
  lmorg.f90,	
  …) 

On-­‐going 18/09/2014 Mostly	
  in	
  lmorg.f90	
  +	
  some	
  u<lity	
  
func<ons 

Diagnos<cs Not	
  started 2	
  days	
  (for	
  
minimal	
  set) 

Minimal	
  set	
  sufficient	
  for	
  standard	
  
verifica<on	
  (also	
  for	
  CALMO) 

Output Not	
  started 30/09/2014 Port	
  already	
  available,	
  only	
  need	
  to	
  
be	
  merged	
  into	
  5.0 

Single	
  precision On	
  hold Doesn’t	
  work	
  for	
  assimila<on 



Documentation 

•  Existing 
•  Stencil library workshop material 
•  Stencil library (implementation) 
•  GCL documentation 
•  Communication framework 
•  Serialization framework 
•  C++ style-guide 
•  Single precision CNL 
•  Block structure API + users guide 
•  OpenACC (implementation) 

•  Incomplete or Missing 
•  Stencil library (users guide) 
•  Parallel NetCDF I/O (users guide) 



STELLA developments 

•  STELLA = Stencil Loop Language 
•  Generic C++ library for stencils on structured grids 
•  Still young, but evolving rapidly… 



STELLA as a language 

Keywords 

•  Base language 
StencilCompiler, Param, StencilConfiguration, define_loops, 
define_sweep, define_stages, StencilStage, IJRange, Krange, 
define_switch, define_case, define_if 
 

•  Optimization 
define_temporaries, StencilBuffer, StageVariable, 
define_caches, IJCache, KCache, IJKCache, KWindow 

•  Qualifiers 
•  FullDomain, FlatCoordinates, TerrainCoordinates 
•  KMinimumCenter, KMaximumCenter, … 
•  cKIncrement, cKDecrement, cKParallel 
•  cFillAndFlush, cFill, cFlush, cLocal 

Language elements 
•  Declaration 
•  Loops (k, ij) 
•  Conditions (switch/

case, if) 



STELLA / C++ interoperability 

•  We do it all the time (for testing)! 
C

++
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STELLA developments 

•  Syntax features 
•  flexible runtime / compile time options 
•  flexible if and switch/case statements 

•  Performance features 
•  vertical parallelization 
•  improved caching on GPU 

•  Debugging features 
•  Unified compile time errors 
•  Parser 

•  Standalone usage features 
•  Debugging features 
•  Logging / verbose mode 
•  Python interface 



Vertical parallelization 

Next steps 
•  Parallel tridiagonal 

solve 
•  Investigate BottZ 

Next steps 
•  Parallel tridiagonal 

solve 
•  Investigate BottZ 

Dycore stencils, 32x32, K20X 

parallel 

directionally parallel 

tridiagonal  



Review by Michael Baldauf 

•  We take the feedback very seriously 

•  Summary of (negative) feedback 
•  It is hard to learn a new language (à help, docu) 

•  switch imperative à declarative is hard 

•  STELLA is harder than C++ 

•  Productivity is low (factor 5-10) 

•  it get‘s better over time 

•  performance portable code 

•  coding is typically fraction of working time 

•  No advantages of DSEL, use source-to-source 
translator? (à evaluation) 



POMPA Conclusions 

•  Retain the Fortran code, but re-evaluate this decision regularly 
•  Situation is evolving rapidly 
•  Extra effort carried by COSMO consortium 

•  Synchronization of Fortran with C++ code has to be organized 
•  This can not be only done by the dynamics developers 
•  But, interaction is critical for efficiency and knowhow transfer 

•  Involve developers in design and implementation next version of 
stencil library 
•  Via a joint research project? 
•  Especially also from the ICON team 

•  Focus more on usability features of C++ code in standalone 
mode 
•  Try a new development using STELLA 



Coordination of new versions 

SCA 

New development 

GPU Guru 

We would not recommend delivering a version which is out-of-synch to the 
users 



Coding standards 

Coding standards require adaption / extension 
 

•  C++ code 
•  Coding conventions of Fortran don’t apply (e.g. naming) 
•  Integrate POMPA project coding conventions? 

•  OpenACC / GPU 
•  Changes for good practices 

•  Conflicting interests 
•  Performance on CPUs / GPUs / other hardware 
•  Memory usage vs. efficiency 

•  License for STELLA and C++ Dycore? 



Knowhow Transfer 

•  Stencil workshop 
•  OpenACC tutorial 
•  Documentation + Presentations + Publications + Newsletters 
•  What else? Your suggestions? 



Project extension 

•  POMPA project extension proposed until 09.2015 
(according to project plan v5.0) 

•  Main reasons 

•  Integration into 5.X will require further work with code 
responsibles, SCA, and working group chairs 

•  Further GPU porting work required/requested (physical 
parametrizations, LHN) 

•  Work to keep C++ version of dycore synchronized 
•  Support, training and documentation 
•  Assimilation does not work in single precision 
•  Open tasks (hybrid OpenMP/MPI, new halo-update, …) 
•  Ongoing related activities (e.g. PASC GridTools project) 



Thank you! 


