

Summary of Priority Project POMPA

Oliver Fuhrer, MeteoSwiss
(for the whole project team)

Colleagues (Thanks!)

Andrea Arteaga
Anne Roches
Ben Cumming
Carlos Osuna
Christoph Schraff
David Leutwyler
Lucas Benedicic
Mauro Bianco
Michael Baldauf

Peter Messmer
Stefan Rüdisühli
Tobias Gysi
Ulrich Schättler
Xavier Lapillonne

Menu

!   Highlight

!   Specific tasks

! Single precision

! Performance profiling of 5.1

! COSMO 5.X on GPU

! STELLA developments & discussion

!   Outlook

Climate Simulations on GPU (ETH)

(courtesy of David Leutwyler)

•  Cray XC30 @ CSCS
each node has one GPU and
one CPU

•  COSMO 4.18 + modifs

•  European Domain @ 2.2 km
Size 1536 x 1536 x 60

•  144 nodes (only GPU used)
40% of DWD’s XC30

•  Time-to-solution is roughly
0.2 SYPD
~2 months for 10 years

•  Allocation for ~50 years
1.1 million nodehours

Climate Simulations on GPU

Finished
•  HP2C COSMO-CLM (June 2010 – June 2013, 1 MCHF)

•  HP2C OPCODE (July 2011 – June 2013, 0.5 MCHF)

•  HP2C COCoNet (January 2012 – June 2013, 0.2 MCHF)

New

•  PASC GridTools (January 2014 – June 2017, 0.7 MCHF)

•  SNF Sinergia (May 2015 – April 2018, 1.5 MCHF)

Planned

•  PASC Focused

•  H2020 (ECMWF)

Third-party funding

Single precision (1/2)

•  Will be in official version 5.1, activate with -DSINGLEPRECISION
•  Runtime & memory consumption decreases significantly

(~ 60% of double precision)
•  Tested for COSMO-E

•  But…
•  Some parts don’t work yet (e.g. assimilation) or haven’t

been tested (e.g. seaice)
•  Developer behavior has to change
•  Developers currently don’t run single precision

•  Recommendation
•  Read CNL!
•  Validate your setup before using SP!
•  Talk to us!

Single precision (2/2)

•  Verification of T2m at +5 days (1 month COSMO-E)

Deutscher Wetterdienst

Scalability of COSMO Components (incl. Comm.)

0.25

0.5

1

2

4

8

16

32

200 400 800 1600 3200 6400

Ideal
Dynamics
Physics
Nudging
LHN
I/O
Total

11/09/14 COSMO General Meeting 2014, Eretria, Greece 9

cores

re
la

tiv
e

sp
ee

du
p

Deutscher Wetterdienst

First Conclusions
è  Scalability of COSMO-Model for COSMO-DE65 domain size is reasonably

well up to 1600 cores. Dynamics and Physics also scale beyond up to 6400
cores.

è  Operational requirements for COSMO-DE65 ensemble can currently not be
met

è  This is not a problem of the scalability, but of some expensive components!

è  Expensive Components:

è New fast-waves solver is more expensive than old one (40-50% of
dynamics time; but not investigated further up to now)

è Communication in the Latent Heat Nudging

è Additional Computations: is almost only in RTTOV10

è  factor of about 10-15 compared to RTTOV7

11/09/14 COSMO General Meeting 2014, Eretria, Greece 10

Summary of POMPA

4.19

4.19
POMPA

5.X

POMPA developments

•  C++ Dycore
•  Changes and bugfixes in

Fortran dycore
•  Static memory allocations
•  Block module
•  Block physics
•  Serialization
•  Single precision
•  New communication

interfaces
•  New BC module
•  Changes in BCs inside and

after dynamics

•  Code refactorings
•  OpenACC directives
•  Tracking and copying of

boundary fields
•  Re-ordering of microphysics
•  Re-ordering of assimilation /

relaxation
•  Change of application

domain in relaxation
•  NetCDF I/O
•  …

Strategy

•  Goal GPU capable COSMO version 5.X delivered to SCA
by December 2014

•  Guideline COSMO Coding Standards

•  Path WG chairs à SMC à SCA à Trunk

•  Many changes to a large part of the code

•  Keeping in sync with the latest repository head is an effort

Conclusion
•  In order to make this happen…

We are dependent on code owners, SCA, WG chairs and
SMC for their time and support!

•  Bring changes back step-by-step

•  Thanks to Uli (block, microph) and Christoph (assimilation)!

GPU Acceleration (1/2)

•  On track
•  Not all namelist options will be supported for 5.X version

(current focus COSMO-1)
•  Not all output fields will be supported for 5.X version (e.g.

CAPE)
•  You require C++ dynamical core based on STELLA in order

to run on GPU

Conclusion
•  Tell us your requirements!
•  Send us your YUSPECIF!
•  Talk to us!

GPU Acceleration (2/2)
Parts Status Delivery	
 /	

Required	
 work
Remark

Physics On-­‐going	
 18/09/2014 Only	
 turbulence	
 and	
 radia<on	
 s<ll	

on-­‐going.

Fortran-­‐C++	
 interface On-­‐going 05/09/2014 First	
 version	
 working.	
 Modifica<ons	

on-­‐going.

Dynamical	
 core On-­‐going 18/09/2014 Working.	
 Including	
 new	
 FW	
 solver.	

Some	
 features	
 for	
 C-­‐1	
 s<ll	
 missing.

Assimila<on Ready	
 to	
 merge 1	
 day.	

On-­‐demand

Tested	
 with	
 Cray,	
 problem	
 with	
 PGI	

No	
 LHN

Communica<on Ready Use	
 GCL	
 for	
 GPU

Structure	
 code	

(e.g.	
 ini<aliza<on,	
 lmorg.f90,	
 …)

On-­‐going 18/09/2014 Mostly	
 in	
 lmorg.f90	
 +	
 some	
 u<lity	

func<ons

Diagnos<cs Not	
 started 2	
 days	
 (for	

minimal	
 set)

Minimal	
 set	
 sufficient	
 for	
 standard	

verifica<on	
 (also	
 for	
 CALMO)

Output Not	
 started 30/09/2014 Port	
 already	
 available,	
 only	
 need	
 to	

be	
 merged	
 into	
 5.0

Single	
 precision On	
 hold Doesn’t	
 work	
 for	
 assimila<on

Documentation

•  Existing
•  Stencil library workshop material
•  Stencil library (implementation)
•  GCL documentation
•  Communication framework
•  Serialization framework
•  C++ style-guide
•  Single precision CNL
•  Block structure API + users guide
•  OpenACC (implementation)

•  Incomplete or Missing
•  Stencil library (users guide)
•  Parallel NetCDF I/O (users guide)

STELLA developments

•  STELLA = Stencil Loop Language
•  Generic C++ library for stencils on structured grids
•  Still young, but evolving rapidly…

STELLA as a language

Keywords

•  Base language
StencilCompiler, Param, StencilConfiguration, define_loops,
define_sweep, define_stages, StencilStage, IJRange, Krange,
define_switch, define_case, define_if

•  Optimization
define_temporaries, StencilBuffer, StageVariable,
define_caches, IJCache, KCache, IJKCache, KWindow

•  Qualifiers
•  FullDomain, FlatCoordinates, TerrainCoordinates
•  KMinimumCenter, KMaximumCenter, …
•  cKIncrement, cKDecrement, cKParallel
•  cFillAndFlush, cFill, cFlush, cLocal

Language elements
•  Declaration
•  Loops (k, ij)
•  Conditions (switch/

case, if)

STELLA / C++ interoperability

•  We do it all the time (for testing)!
C

++
 c

od
e

“S
TE

LL
A

co
de

”

STELLA developments

•  Syntax features
•  flexible runtime / compile time options
•  flexible if and switch/case statements

•  Performance features
•  vertical parallelization
•  improved caching on GPU

•  Debugging features
•  Unified compile time errors
•  Parser

•  Standalone usage features
•  Debugging features
•  Logging / verbose mode
•  Python interface

Vertical parallelization

Next steps
•  Parallel tridiagonal

solve
•  Investigate BottZ

Next steps
•  Parallel tridiagonal

solve
•  Investigate BottZ

Dycore stencils, 32x32, K20X

parallel

directionally parallel

tridiagonal

Review by Michael Baldauf

•  We take the feedback very seriously

•  Summary of (negative) feedback
•  It is hard to learn a new language (à help, docu)

•  switch imperative à declarative is hard

•  STELLA is harder than C++

•  Productivity is low (factor 5-10)

•  it get‘s better over time

•  performance portable code

•  coding is typically fraction of working time

•  No advantages of DSEL, use source-to-source
translator? (à evaluation)

POMPA Conclusions

•  Retain the Fortran code, but re-evaluate this decision regularly
•  Situation is evolving rapidly
•  Extra effort carried by COSMO consortium

•  Synchronization of Fortran with C++ code has to be organized
•  This can not be only done by the dynamics developers
•  But, interaction is critical for efficiency and knowhow transfer

•  Involve developers in design and implementation next version of
stencil library
•  Via a joint research project?
•  Especially also from the ICON team

•  Focus more on usability features of C++ code in standalone
mode
•  Try a new development using STELLA

Coordination of new versions

SCA

New development

GPU Guru

We would not recommend delivering a version which is out-of-synch to the
users

Coding standards

Coding standards require adaption / extension

•  C++ code
•  Coding conventions of Fortran don’t apply (e.g. naming)
•  Integrate POMPA project coding conventions?

•  OpenACC / GPU
•  Changes for good practices

•  Conflicting interests
•  Performance on CPUs / GPUs / other hardware
•  Memory usage vs. efficiency

•  License for STELLA and C++ Dycore?

Knowhow Transfer

•  Stencil workshop
•  OpenACC tutorial
•  Documentation + Presentations + Publications + Newsletters
•  What else? Your suggestions?

Project extension

•  POMPA project extension proposed until 09.2015
(according to project plan v5.0)

•  Main reasons

•  Integration into 5.X will require further work with code
responsibles, SCA, and working group chairs

•  Further GPU porting work required/requested (physical
parametrizations, LHN)

•  Work to keep C++ version of dycore synchronized
•  Support, training and documentation
•  Assimilation does not work in single precision
•  Open tasks (hybrid OpenMP/MPI, new halo-update, …)
•  Ongoing related activities (e.g. PASC GridTools project)

Thank you!

