PP POMPA (WG6)

Parallel Session

Welcorme!



Agenda

16:30
17:00
17:20
17:40
18:00
18:20
18:40
19:00

Oliver Fuhrer Overview

Xavier Lapillonne  OpenACC directives

Oliver Fuhrer Dycore rewrite

André Walser Single precision

all Integration of POMPA developments
Zbigniew Piotrowski How to marry POMPA and CELO?
Massimo Milelli WG6 Science Plan

all Any other discussion points?



Project Management

 Revised project plan

« Final report on the new dynamical core based on the
stencil library

« SMC recommended to accepted project plan and to
continue developments with goal to deliver a GPU-capable

version of COSMO based on the stencil library
« STC gave go ahead and accepted revised project plan

 Goal: POMPA developments in official version in
December 2014



Resources (planned + missing)
4.2 + 0.9

Task 3 Improve current parallelization (0.6 + 0.1 FTEs)

— GPU-capable communication library
— Blocked physics package

Task 4 1/O Strategy (0.4 FTEs)
— Porting of I/O code to GPUs

Task 5 Redesign dycore (2.2 + 0.2 FTEs)
— Consolidation/improvements of stencil library
- Full featured RK dynamical core based on stencil library
- Update to COSMO v5.x

- Knowhow transfer

Task 6 GPU acceleration (1.0 + 0.6 FTEs)

- Full featured physics based on OpenACC

- Update to COSMO v5.x
— Consolidation/improvements of OpenACC sections



PP POMPA Overview

« Task 1 Performance analysis and documentation

« Task 2 Redesign memory layout and data structures
 Task 3 Improve current parallelization (- discussion)
« Task 4 Parallel I/0O

 Task 5 Redesign of dynamical core - Ol

« Task 6 Explore GPU acceleration - Xavier

« Task 7 Implementation documentation

« Task 8 Single precision version - André



¢  Overview of GPU Effort

 Low FLOP count per load/store (stencils!)

« Transfer of data on each timestep too expensive

* §
P Time/At
art . Ime Transfer of ten
Dynamics 172 ms VS prognostic variables
Physics 36 ms 118 ms
Total 253 ms

All code which touches the prognostic variables
on every timestep has to be ported



Full GPU Port

GPU-implementation of “full” timestep of COSMO

Aimed for...
« Completeness (full COSMO model)
+ Performance (lower time-to-solution, higher efficiency)

 Portability / Maintainability (separation of concerns, no
hacks, libraries)

- Durability (knowledge transfer and documentation)

 Time / resource / technology constraints lead to
compromises



e Approach

Dynamical core

« Small group of developers
* Memory bandwidth bound
« Complex stencils (3D)

* 60% of runtime

- Complete rewrite in C++/CUDA
- Development of a stencil library

- Development of new communication
library (GCL)

- Target architecture x86 CPUs and
NVIDIA GPUs.

- Extendable to other architectures
- Long term adaptation of the model

Physics, Data Assimilation, et al.

« Large group of developers

« Code may be shared with other models
* Less memory bandwidth bound

« Large part of code (50% of the lines)

* 20% of runtime

- GPU port with compiler directives
(OpenACC)

—> Little code optimization
- Some parts stay on CPU

- Most ported routines currently have CPU
and GPU version




+

At

Implementation

Setup

AN

Input
Physics

Dynamics src_runge kutta.fo90

Relaxation src relaxation.f90

Assimilation
Halo-update - Wrapper
Diagnostics

Output

J

Cleanup

Copy to GPU

OpenACC

Wrapper

C++/CUDA

Wrapper

OpenACC

Copy from GPU



Demonstration Project

» Leverage the research results of POMPA

* Prototype implementation of the COSMO production suite of
MeteoSwiss making aggressive use of GPU technology

« Similar time-to-solution on substantially cheaper hardware:

il Cray XEG

b{ 144 CPUs
E

O phimse ECOphiex ECOphiax

1 cabinet 1 server rack



Status

* Prototype of COSMO (v4.19) running on GPU-hardware

« Regular runs
(00 UTC and 12 UTC of COSMO-7 and COSMO-2)

* Full operational chain
(plots are delivered into visualization software)

» Almost full featured, but certainly physically reasonable




¥ COSMO Performance Comparison

Cray XEG6 albis 65 nodes vs. opcode 1 node (8 GPUs):

Time [Min]

COSMO-2 +33h COSMO-7 +72h
40.0 25.0
Cray XE6 OPR Cray XE6 OPR
35.0 | Tyan K20c HP2C
Tyan K20c HP2C
20.0
30.0
5
25.0 =
o 15.0
£
20.0 =
15.0 ; — 100
10.0
5.0
5.0
0.0 0.0
Total Dynamics  Physics Other Output Total ~ Dynamics  Physics Other Output



Time per Timestep [ms]

¥  C-2 Single Node (K20x vs. SB)

1024.0

512.0

256.0

128.0

64.0 o ©

¢ Total CPU

¢ Total GPU

¢ Dynamics GPU
Physics GPU

32.0

16.0 -

8.0

4.0

256

512

operational
requirement
(24 h = 18 min)

1024

“turnover”

OOM

2048
Gridpoints

4096

32768



¢  Conclusions

« Everything worked...
- Dynamical core re-write
* Integration of CUDA/OpenACC/Fortran/C++/...
« GPU-to-GPU communication
+ Collaboration

* Prototype (v4.19) capable of doing real-case simulations is
available

* If you are interested, get involved!



+

Next steps...

* Port remaining parts
* Physics
» Dynamical core

/0O

 (Consolidate code

« Bring developments back to official version

Re-ordering of operations

New communication
interfaces

Single precision
New handling of BCs

Serialization

Block physics

Static memory allocations
Code refactorings



¥  Thank you!

e Questions?



