
PP POMPA (WG6)
Parallel Session

COSMO GM13, Sibiu

Agenda

16:30 Oliver Fuhrer Overview

17:00 Xavier Lapillonne OpenACC directives

17:20 Oliver Fuhrer Dycore rewrite

17:40 André Walser Single precision

18:00 all Integration of POMPA developments

18:20 Zbigniew Piotrowski How to marry POMPA and CELO?

18:40 Massimo Milelli WG6 Science Plan

19:00 all Any other discussion points?

Project Management

•  Revised project plan

•  Final report on the new dynamical core based on the
stencil library

•  SMC recommended to accepted project plan and to
continue developments with goal to deliver a GPU-capable
version of COSMO based on the stencil library

•  STC gave go ahead and accepted revised project plan

•  Goal: POMPA developments in official version in
December 2014

Resources (planned + missing)
 4.2 + 0.9
Task 3 Improve current parallelization (0.6 + 0.1 FTEs)
-  GPU-capable communication library
-  Blocked physics package

Task 4 I/O Strategy (0.4 FTEs)
-  Porting of I/O code to GPUs

Task 5 Redesign dycore (2.2 + 0.2 FTEs)
-  Consolidation/improvements of stencil library
-  Full featured RK dynamical core based on stencil library
-  Update to COSMO v5.x
-  Knowhow transfer

Task 6 GPU acceleration (1.0 + 0.6 FTEs)
-  Full featured physics based on OpenACC
-  Update to COSMO v5.x
-  Consolidation/improvements of OpenACC sections

PP POMPA Overview

•  Task 1 Performance analysis and documentation

•  Task 2 Redesign memory layout and data structures

•  Task 3 Improve current parallelization (discussion)

•  Task 4 Parallel I/O

•  Task 5 Redesign of dynamical core Oli

•  Task 6 Explore GPU acceleration Xavier

•  Task 7 Implementation documentation

•  Task 8 Single precision version André

Overview of GPU Effort

•  Low FLOP count per load/store (stencils!)

•  Transfer of data on each timestep too expensive

All code which touches the prognostic variables
on every timestep has to be ported

Part Time/Δt
Dynamics 172 ms
Physics 36 ms
Total 253 ms

vs
118 ms

Transfer of ten
prognostic variables

* §

Full GPU Port

 GPU-implementation of “full” timestep of COSMO

Aimed for…

•  Completeness (full COSMO model)
•  Performance (lower time-to-solution, higher efficiency)
•  Portability / Maintainability (separation of concerns, no

hacks, libraries)
•  Durability (knowledge transfer and documentation)

•  Time / resource / technology constraints lead to
compromises

Approach

Dynamical core

•  Small group of developers
•  Memory bandwidth bound
•  Complex stencils (3D)
•  60% of runtime

  Complete rewrite in C++/CUDA
  Development of a stencil library
  Development of new communication

library (GCL)
  Target architecture x86 CPUs and

NVIDIA GPUs.
  Extendable to other architectures
  Long term adaptation of the model

Physics, Data Assimilation, et al.

•  Large group of developers
•  Code may be shared with other models
•  Less memory bandwidth bound
•  Large part of code (50% of the lines)
•  20% of runtime

 GPU port with compiler directives
(OpenACC)

  Little code optimization
  Some parts stay on CPU
 Most ported routines currently have CPU

and GPU version

Setup

Cleanup

Implementation

Input
Physics

Dynamics src_runge_kutta.f90

Relaxation src_relaxation.f90

Assimilation
Halo-update Wrapper
Diagnostics

Output

Δt

Wrapper

Wrapper

OpenACC

OpenACC

C++/CUDA

Copy to GPU

Copy from GPU

Demonstration Project
•  Leverage the research results of POMPA

•  Prototype implementation of the COSMO production suite of
MeteoSwiss making aggressive use of GPU technology

•  Similar time-to-solution on substantially cheaper hardware:

1 cabinet 1 server rack

Cray XE6
144 CPUs

1 CPU
8 GPUs

Status

•  Prototype of COSMO (v4.19) running on GPU-hardware
•  Regular runs

(00 UTC and 12 UTC of COSMO-7 and COSMO-2)
•  Full operational chain

(plots are delivered into visualization software)
•  Almost full featured, but certainly physically reasonable

COSMO Performance Comparison

Cray XE6 albis 65 nodes vs. opcode 1 node (8 GPUs):

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Total Dynamics Physics Other Output

Ti
m

e
[M

in
]

COSMO-2 +33h

Cray XE6 OPR

Tyan K20c HP2C

0.0

5.0

10.0

15.0

20.0

25.0

Total Dynamics Physics Other Output

Ti
m

e
[M

in
]

COSMO-7 +72h

Cray XE6 OPR

Tyan K20c HP2C

C-2 Single Node (K20x vs. SB)

operational
requirement

(24 h = 18 min)

“turnover” OOM

Conclusions

•  Everything worked…
•  Dynamical core re-write
•  Integration of CUDA/OpenACC/Fortran/C++/…
•  GPU-to-GPU communication
•  Collaboration

•  Prototype (v4.19) capable of doing real-case simulations is
available

•  If you are interested, get involved!

Next steps…

•  Port remaining parts
•  Physics
•  Dynamical core
•  I/O

•  Consolidate code

•  Bring developments back to official version

•  Re-ordering of operations
•  New communication

interfaces
•  Single precision
•  New handling of BCs

•  Serialization
•  Block physics
•  Static memory allocations
•  Code refactorings
•  …

Thank you!

•  Questions?

