
PP POMPA (WG6)
Parallel Session

COSMO GM13, Sibiu

Agenda

16:30 Oliver Fuhrer Overview

17:00 Xavier Lapillonne OpenACC directives

17:20 Oliver Fuhrer Dycore rewrite

17:40 André Walser Single precision

18:00 all Integration of POMPA developments

18:20 Zbigniew Piotrowski How to marry POMPA and CELO?

18:40 Massimo Milelli WG6 Science Plan

19:00 all Any other discussion points?

Project Management

•  Revised project plan

•  Final report on the new dynamical core based on the
stencil library

•  SMC recommended to accepted project plan and to
continue developments with goal to deliver a GPU-capable
version of COSMO based on the stencil library

•  STC gave go ahead and accepted revised project plan

•  Goal: POMPA developments in official version in
December 2014

Resources (planned + missing)
 4.2 + 0.9
Task 3 Improve current parallelization (0.6 + 0.1 FTEs)
-  GPU-capable communication library
-  Blocked physics package

Task 4 I/O Strategy (0.4 FTEs)
-  Porting of I/O code to GPUs

Task 5 Redesign dycore (2.2 + 0.2 FTEs)
-  Consolidation/improvements of stencil library
-  Full featured RK dynamical core based on stencil library
-  Update to COSMO v5.x
-  Knowhow transfer

Task 6 GPU acceleration (1.0 + 0.6 FTEs)
-  Full featured physics based on OpenACC
-  Update to COSMO v5.x
-  Consolidation/improvements of OpenACC sections

PP POMPA Overview

•  Task 1 Performance analysis and documentation

•  Task 2 Redesign memory layout and data structures

•  Task 3 Improve current parallelization ( discussion)

•  Task 4 Parallel I/O

•  Task 5 Redesign of dynamical core  Oli

•  Task 6 Explore GPU acceleration  Xavier

•  Task 7 Implementation documentation

•  Task 8 Single precision version  André

Overview of GPU Effort

•  Low FLOP count per load/store (stencils!)

•  Transfer of data on each timestep too expensive

All code which touches the prognostic variables
on every timestep has to be ported

Part Time/Δt
Dynamics 172 ms
Physics 36 ms
Total 253 ms

vs
118 ms

Transfer of ten
prognostic variables

* §

Full GPU Port

 GPU-implementation of “full” timestep of COSMO

Aimed for…

•  Completeness (full COSMO model)
•  Performance (lower time-to-solution, higher efficiency)
•  Portability / Maintainability (separation of concerns, no

hacks, libraries)
•  Durability (knowledge transfer and documentation)

•  Time / resource / technology constraints lead to
compromises

Approach

Dynamical core

•  Small group of developers
•  Memory bandwidth bound
•  Complex stencils (3D)
•  60% of runtime

  Complete rewrite in C++/CUDA
  Development of a stencil library
  Development of new communication

library (GCL)
  Target architecture x86 CPUs and

NVIDIA GPUs.
  Extendable to other architectures
  Long term adaptation of the model

Physics, Data Assimilation, et al.

•  Large group of developers
•  Code may be shared with other models
•  Less memory bandwidth bound
•  Large part of code (50% of the lines)
•  20% of runtime

 GPU port with compiler directives
(OpenACC)

  Little code optimization
  Some parts stay on CPU
 Most ported routines currently have CPU

and GPU version

Setup

Cleanup

Implementation

Input
Physics

Dynamics src_runge_kutta.f90

Relaxation src_relaxation.f90

Assimilation
Halo-update  Wrapper
Diagnostics

Output

Δt

Wrapper

Wrapper

OpenACC

OpenACC

C++/CUDA

Copy to GPU

Copy from GPU

Demonstration Project
•  Leverage the research results of POMPA

•  Prototype implementation of the COSMO production suite of
MeteoSwiss making aggressive use of GPU technology

•  Similar time-to-solution on substantially cheaper hardware:

1 cabinet 1 server rack

Cray XE6
144 CPUs

1 CPU
8 GPUs

Status

•  Prototype of COSMO (v4.19) running on GPU-hardware
•  Regular runs

(00 UTC and 12 UTC of COSMO-7 and COSMO-2)
•  Full operational chain

(plots are delivered into visualization software)
•  Almost full featured, but certainly physically reasonable

COSMO Performance Comparison

Cray XE6 albis 65 nodes vs. opcode 1 node (8 GPUs):

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Total Dynamics Physics Other Output

Ti
m

e
[M

in
]

COSMO-2 +33h

Cray XE6 OPR

Tyan K20c HP2C

0.0

5.0

10.0

15.0

20.0

25.0

Total Dynamics Physics Other Output

Ti
m

e
[M

in
]

COSMO-7 +72h

Cray XE6 OPR

Tyan K20c HP2C

C-2 Single Node (K20x vs. SB)

operational
requirement

(24 h = 18 min)

“turnover” OOM

Conclusions

•  Everything worked…
•  Dynamical core re-write
•  Integration of CUDA/OpenACC/Fortran/C++/…
•  GPU-to-GPU communication
•  Collaboration

•  Prototype (v4.19) capable of doing real-case simulations is
available

•  If you are interested, get involved!

Next steps…

•  Port remaining parts
•  Physics
•  Dynamical core
•  I/O

•  Consolidate code

•  Bring developments back to official version

•  Re-ordering of operations
•  New communication

interfaces
•  Single precision
•  New handling of BCs

•  Serialization
•  Block physics
•  Static memory allocations
•  Code refactorings
•  …

Thank you!

•  Questions?

