
Dynamical Core Rewrite

Tobias Gysi
Oliver Fuhrer
Carlos Osuna

COSMO GM13, Sibiu

Fundamental question

How to write a model code which…

•  allows productive development by domain scientists

•  runs efficiently on different HPC architectures

•  continues to do so in the future

•  Clear trend in HPC architectures to become heterogeneous
(GPUs, MIC, …)

•  Programming models are not getting simpler (OpenMP,
OpenACC, NEC directives, software managed memory, …)

•  Accelerators are an attractive alternative for COSMO, but
we will always want to run on a plain CPU machine

It is not clear how to solve this with the current COSMO code!

Stencil Library (DSEL)

•  Separate user code (algorithm) from hardware specific
implementation (optimization)

•  Example given in report

Fortran

This is a fundamental change for COSMO code with distinct pros / cons

Library approach

STELLA usage

STELLA usage

Documentation & Publications

•  Documentation
•  Stencil library (implementation)
•  Communication framework
•  Serialization framework
•  Style-guide

•  Stencil library workshop material (“users guide”)

•  See http://hpcforge.org/

•  Publications
•  Gysi et al. 2013 (in preparation)

Effort to learn STELLA

•  C++ and STL knowhow required
•  No need to learn OpenMP, CUDA, template-

metaprogramming

•  Users
•  Tobias Gysi
•  Carlos Osuna
•  Oliver Fuhrer
•  Ben Cumming (PostDoc, support, indirect addressing)
•  Men Muheim (PhD, horizontal diffusion)
•  Florian Dörfler (MSc, vertical diffusion, Coriolis)
•  Katharina Riedinger (BSc, Bott advection)
•  Andrea Arteaga (BSc, workshop)
•  Kevin Wallimann (BSc, semi-Lagrangian advection)
•  Michael Baldauf (PhD, new FW-solver)
•  Nicolò Lardelli (MSc, horizontal turbulent diffusion)
•  Joseph Charles (PhD, microphysics)
•  Xavier Lapillonnne (moisture divergence)

STELLA Support

•  Library is in good shape

•  Handover from Tobias to Ben

•  Maintenance tasks
•  Incremental improvements (ijk-caching, indirect addressing,

usability, …)
•  Bugs
•  Gatekeeper for modifications

•  Support tasks
•  Last level troubleshooting

Recent Developments – STELLA

•  Functionality improvements
•  Refactoring temporary fields (Ben Cumming)
•  Dynamic indexing (Ben Cumming)
•  Switch case DSEL extension which supports runtime

switches (Tobias Gysi)

•  Performance improvements
•  Re-implementation of software managed caching

(Tobias Gysi)
•  Do not allocate temporary fields which are not accessed

due to caches (Tobias Gysi)

Recent Developments - Dycore

•  Additional dycore features
•  Relaxation (Carlos Osuna)
•  Saturation Adjustments (Carlos Osuna)
•  Strang splitting support for AdvectionPD (Tobias Gysi)
•  Moisture divergence (Xavier Lapillonne)
•  Other developments are work in progress, e.g. other

advection schemes

•  Missing features
•  Only RK-core considered
•  new FW-solver
•  Several options (PD-advection, advection order, …)
•  …

Software Managed Caching

•  Software controlled cache management
•  Data is placed explicitly in the caches
•  Data is removed from the caches if it is not needed

anymore
•  Application knowledge helps to used small caches efficiently

•  Do not cache fields accessed once
•  Do not write back modified cache lines not accessed

anymore
•  Immediately remove data from cache if it is not used

anymore

•  We have implemented software managed caching for the
GPU backend

Software Managed Caching – KCache

•  Sliding window in K direction is stored in GPU registers
•  Used to buffer multiple K levels no accesses in IJ
•  Optionally filled and / or flushed from the underlying field
•  E.g. buffer all intermediate fields of z advection

Important for efficient
communication between

K loop levels

K /* stage A */
temp(i,j,k+1) = 2.0;

/* stage B */
result(i,j,k) =
 temp(i,j,k+1) +
 temp(i,j,k) +
 temp(i,j,k-1);

Stage A

Stage B

Usage Example

Keep all AdvectionPDZ intermediates in registers:

define_loops(
 define_sweep<cKIncrement>(
 define_caches(
 KCache<data_in, cFill, KWindow<-2,1>, KRange<FullDomain,0,0> >(),
 KCache<sqrtgrs, cFill, KWindow<-2,2>, KRange<FullDomain,0,0> >(),
 KCache<icr, cLocal, KWindow<-1,2>, KRange<FullDomain,-2,2> >(),
 KCache<wcfrac, cLocal, KWindow<-1,2>, KRange<FullDomain,0,1> >(),
 KCache<fip, cLocal, KWindow<-1,2>, KRange<FullDomain,0,1> >(),
 KCache<fim, cLocal, KWindow<-1,2>, KRange<FullDomain,0,1> >(),
 KCache<fcr, cLocal, KWindow<-1,2>, KRange<FullDomain,0,1> >(),
 KCache<flux, cLocal, KWindow<-2,1>, KRange<FullDomain,0,1> >()
),
 define_stages(
 StencilStage<ICRStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,-2,0> >(),
 StencilStage<FIPAndFIMStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,-1,0> >(),
 StencilStage<FCRStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,1,1> >(),
 StencilStage<FluxStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,2,2> >(),
 StencilStage<DataStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,2,2> >()
)
)
)

Software Managed Caching – IJCache

•  IJ plane is stored in shared memory
•  Used to buffer multiple IJ positions no accesses in K
•  Simple local cache not filled and / or flushed from the

underlying field
•  E.g. buffer intermediate values of horizontal diffusion

K
if(/* in range of stage A */)
{
 temp(i,j,k) = 2.0;
}
__syncthreads();

if(/* in range of stage B */)
{
 result(i,j,k) =
 temp(i,j,k) +
 temp(i+1,j,k);
}

Important for efficient
communication between

threads

Stage A

Stage B

Software Managed Caching – IJCache
Example

Keep all HorizontalDiffusion intermediates in shared memory:
define_loops(
 define_sweep<cKIncrement>(
 define_caches(
 IJCache<lap, KRange<FullDomain,0,0> >(),
 IJCache<flx, KRange<FullDomain,0,0> >(),
 IJCache<fly, KRange<FullDomain,0,0> >(),
 IJCache<rxp, KRange<FullDomain,0,0> >(),
 IJCache<rxm, KRange<FullDomain,0,0> >()
),
 define_stages(
 StencilStage<LapStage, IJRange<cComplete,-2,2,-2,2>, KRange<FullDomain,0,0> >(),
 StencilStage<FluxStage, IJRange<cComplete,-2,1,-2,1>, KRange<FullDomain,0,0> >(),
 StencilStage<RXStage, IJRange<cIndented,-1,1,-1,1>, KRange<FullDomain,0,0> >(),
 StencilStage<LimitFluxStage, IJRange<cIndented,-1,0,-1,0>, KRange<FullDomain,0,0> >(),
 StencilStage<DataStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,0,0> >()
)
)
)

Benchmarks

•  CPU performance was measured on a single socket of Piz
Daint
•  Sandy Bridge E5-2670 @ 2.60GHz
•  With hyperthreading

•  GPU performance was measured on my Windows PC
•  Tesla K20c (roughly 10-20% slower than a K20x)
•  ECC on
•  CUDA 5.5

•  Single node measurements on a 128 x 128 data set

Benchmark – Caching vs. no Caching

1.2

1.2

1.3

1.4

1.7

1.3

1.7

1.5

1.6

1.6

1.5

1.6

3.1

0.9

1.8

1.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

HorizontalDiffusionU

HorizontalDiffusionV

AdvectionPDPrepareStepWConRho

HorizontalDiffusionWPP

VerticalDiffusionT

VerticalDiffusionUVW

VerticalDiffusionTracers2

VerticalAdvectionPPTP

AdvectionPDX

VerticalAdvectionUVW

AdvectionPDY

HorizontalDiffusionTracers

AdvectionPDZ

FastWavesUV

FastWavesWPPTP

Total

Caching Speedup

Caching improves the GPU
performance by a factor 1.5x

Benchmark – CPU vs. GPU

2.1
2.8

1.8
5.1

4.7
5.5

2.0
7.2

5.9
1.5

4.2
2.6

4.1
2.6

4.4
2.6

3.1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

VerticalDiffusionTracers2
VerticalDiffusionUVW

VerticalAdvectionPPTP
VerticalDiffusionT

HorizontalAdvectionPPTP
HorizontalAdvectionUV
VerticalAdvectionUVW
SaturationAdjustment

HorizontalAdvectionWWC
FastWavesDivergence

AdvectionPDX
HorizontalDiffusionTracers

AdvectionPDY
FastWavesUV
AdvectionPDZ

FastWavesWPPTP
Total Dycore

Speedup CPU vs. GPU

A tesla K20c shows a 3.1x speedup
over a Sandy Bridge socket

Next Steps…

•  Dynamical core
•  Implement important missing parts

•  STELLA library

•  Continuous development
•  Usability
•  ijk-caches
•  Tuning of GPU backend

•  Next generation
•  Generalization
•  Block-structured / unstructured grids

Thank you!

•  Questions?

