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Fundamental question 

How to write a model code which… 

•  allows productive development by domain scientists 

•  runs efficiently on different HPC architectures 

•  continues to do so in the future 

•  Clear trend in HPC architectures to become heterogeneous 
(GPUs, MIC, …) 

•  Programming models are not getting simpler (OpenMP, 
OpenACC, NEC directives, software managed memory, …) 

•  Accelerators are an attractive alternative for COSMO, but 
we will always want to run on a plain CPU machine 

It is not clear how to solve this with the current COSMO code! 



Stencil Library (DSEL) 

•  Separate user code (algorithm) from hardware specific 
implementation (optimization) 

•  Example given in report 

Fortran 

This is a fundamental change for COSMO code with distinct pros / cons 



Library approach 



STELLA usage 



STELLA usage 



Documentation & Publications 

•  Documentation 
•  Stencil library (implementation) 
•  Communication framework 
•  Serialization framework 
•  Style-guide 

•  Stencil library workshop material (“users guide”) 

•  See http://hpcforge.org/ 

•  Publications 
•  Gysi et al. 2013 (in preparation) 



Effort to learn STELLA 

•  C++ and STL knowhow required 
•  No need to learn OpenMP, CUDA, template-

metaprogramming 

•  Users 
•  Tobias Gysi 
•  Carlos Osuna 
•  Oliver Fuhrer 
•  Ben Cumming (PostDoc, support, indirect addressing) 
•  Men Muheim (PhD, horizontal diffusion) 
•  Florian Dörfler (MSc, vertical diffusion, Coriolis) 
•  Katharina Riedinger (BSc, Bott advection) 
•  Andrea Arteaga (BSc, workshop) 
•  Kevin Wallimann (BSc, semi-Lagrangian advection) 
•  Michael Baldauf (PhD, new FW-solver) 
•  Nicolò Lardelli (MSc, horizontal turbulent diffusion) 
•  Joseph Charles (PhD, microphysics) 
•  Xavier Lapillonnne (moisture divergence) 



STELLA Support 

•  Library is in good shape 

•  Handover from Tobias to Ben 

•  Maintenance tasks 
•  Incremental improvements (ijk-caching, indirect addressing, 

usability, …) 
•  Bugs 
•  Gatekeeper for modifications 

•  Support tasks 
•  Last level troubleshooting 



Recent Developments – STELLA 

•  Functionality improvements 
•  Refactoring temporary fields (Ben Cumming) 
•  Dynamic indexing (Ben Cumming)  
•  Switch case DSEL extension which supports runtime 

switches (Tobias Gysi) 

•  Performance improvements 
•  Re-implementation of software managed caching 

(Tobias Gysi) 
•  Do not allocate temporary fields which are not accessed 

due to caches (Tobias Gysi) 



Recent Developments - Dycore 

•  Additional dycore features 
•  Relaxation (Carlos Osuna) 
•  Saturation Adjustments (Carlos Osuna) 
•  Strang splitting support for AdvectionPD (Tobias Gysi) 
•  Moisture divergence (Xavier Lapillonne) 
•  Other developments are work in progress, e.g. other 

advection schemes 

•  Missing features 
•  Only RK-core considered 
•  new FW-solver 
•  Several options (PD-advection, advection order, …) 
•  … 



Software Managed Caching 

•  Software controlled cache management 
•  Data is placed explicitly in the caches 
•  Data is removed from the caches if it is not needed 

anymore 
•  Application knowledge helps to used small caches efficiently 

•  Do not cache fields accessed once 
•  Do not write back modified cache lines not accessed 

anymore 
•  Immediately remove data from cache if it is not used 

anymore 

•  We have implemented software managed caching for the 
GPU backend 



Software Managed Caching – KCache 

•  Sliding window in K direction is stored in GPU registers 
•  Used to buffer multiple K levels no accesses in IJ 
•  Optionally filled and / or flushed from the underlying field 
•  E.g. buffer all intermediate fields of z advection 

Important for efficient 
communication between 

K loop levels 

K /* stage A */ 
temp(i,j,k+1) = 2.0;     
  
/* stage B */ 
result(i,j,k) =  
    temp(i,j,k+1) +  
    temp(i,j,k) + 
    temp(i,j,k-1);  

Stage A 

Stage B 



Usage Example 

Keep all AdvectionPDZ intermediates in registers: 
 
 
define_loops( 
  define_sweep<cKIncrement>( 
    define_caches( 
      KCache<data_in, cFill, KWindow<-2,1>, KRange<FullDomain,0,0> >(), 
      KCache<sqrtgrs, cFill, KWindow<-2,2>, KRange<FullDomain,0,0> >(), 
      KCache<icr, cLocal, KWindow<-1,2>, KRange<FullDomain,-2,2> >(), 
      KCache<wcfrac, cLocal, KWindow<-1,2>, KRange<FullDomain,0,1> >(), 
      KCache<fip, cLocal, KWindow<-1,2>, KRange<FullDomain,0,1> >(), 
      KCache<fim, cLocal, KWindow<-1,2>, KRange<FullDomain,0,1> >(), 
      KCache<fcr, cLocal, KWindow<-1,2>, KRange<FullDomain,0,1> >(), 
      KCache<flux, cLocal, KWindow<-2,1>, KRange<FullDomain,0,1> >() 
    ), 
    define_stages( 
      StencilStage<ICRStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,-2,0> >(), 
      StencilStage<FIPAndFIMStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,-1,0> >(), 
      StencilStage<FCRStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,1,1> >(), 
      StencilStage<FluxStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,2,2> >(), 
      StencilStage<DataStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,2,2> >() 
    ) 
  ) 
) 



Software Managed Caching – IJCache 

•  IJ plane is stored in shared memory 
•  Used to buffer multiple IJ positions no accesses in K 
•  Simple local cache not filled and / or flushed from the 

underlying field 
•  E.g. buffer intermediate values of horizontal diffusion 
  

K 
if(/* in range of stage A */) 
{ 
    temp(i,j,k) = 2.0;     
} 
__syncthreads(); 
 
if(/* in range of stage B */) 
{ 
    result(i,j,k) =  
        temp(i,j,k) +  
        temp(i+1,j,k); 
} 

Important for efficient 
communication between 

threads  

Stage A 

Stage B 



Software Managed Caching –  IJCache 
Example 

Keep all HorizontalDiffusion intermediates in shared memory: 
define_loops( 
  define_sweep<cKIncrement>( 
    define_caches( 
      IJCache<lap, KRange<FullDomain,0,0> >(), 
      IJCache<flx, KRange<FullDomain,0,0> >(), 
      IJCache<fly, KRange<FullDomain,0,0> >(), 
      IJCache<rxp, KRange<FullDomain,0,0> >(), 
      IJCache<rxm, KRange<FullDomain,0,0> >() 
    ), 
    define_stages( 
      StencilStage<LapStage, IJRange<cComplete,-2,2,-2,2>, KRange<FullDomain,0,0> >(), 
      StencilStage<FluxStage, IJRange<cComplete,-2,1,-2,1>, KRange<FullDomain,0,0> >(), 
      StencilStage<RXStage, IJRange<cIndented,-1,1,-1,1>, KRange<FullDomain,0,0> >(), 
      StencilStage<LimitFluxStage, IJRange<cIndented,-1,0,-1,0>, KRange<FullDomain,0,0> >(), 
      StencilStage<DataStage, IJRange<cComplete,0,0,0,0>, KRange<FullDomain,0,0> >() 
    ) 
  ) 
) 



Benchmarks 

•  CPU performance was measured on a single socket of Piz 
Daint 
•  Sandy Bridge E5-2670 @ 2.60GHz  
•  With hyperthreading 

•  GPU performance was measured on my Windows PC 
•  Tesla K20c (roughly 10-20% slower than a K20x) 
•  ECC on 
•  CUDA 5.5 

•  Single node measurements on a 128 x 128 data set 



Benchmark – Caching vs. no Caching 
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Caching Speedup 

Caching improves the GPU 
performance by a factor 1.5x 



Benchmark – CPU vs. GPU 
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Speedup CPU vs. GPU 

A tesla K20c shows a 3.1x speedup 
over a Sandy Bridge socket 



Next Steps… 

•  Dynamical core 
•  Implement important missing parts 

•  STELLA library 

•  Continuous development 
•  Usability 
•  ijk-caches 
•  Tuning of GPU backend 

•  Next generation 
•  Generalization 
•  Block-structured / unstructured grids 



Thank you! 

•  Questions? 


