

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Running COSMO with single precision

André Walser, Stefan Rüdisühli, Oliver Fuhrer

COSMO General Meeting 3 September 2013, Sibiu

Motivation & Goal

- The advantages of single precision computing:
 - real(kind=8) :: a ! I am 8 Bytes
 - real(kind=4) :: b ! I am 4 Bytes
 - Move less information
 - Keep more numbers in cache
 - Lower precision arithmetic is faster
- Goal: one single place in code to define working precision

Floating point numbers

• Most computers follow the IEEE 754 standard

• range and precision

	max	min	digits	precision
single	10 ³⁸	10 ⁻³⁸	7.2	10 ⁻⁷
double	10 ³⁰⁸	10 ⁻³⁰⁸	16.0	10 ⁻¹⁶

What happened so far...

- Bachelor thesis Katharina Riedinger (2011)
 - showed that using single precision in the fast wave solver of COSMO provides sufficient accuracy for meteorologically relevant situations
- Internship Jérémie Despraz (2012)
 - showed single precision provides sufficient accuracy for COSMO physics with minimal code changes except for radiation
 - developed a single precision prototype of COSMO
- Internship Stefan Rüdisühli (2013 ongoing)
 - clean implementation of single precision in current COSMO version with extensive validation

C Errors Sources

• Cancellation error (e.g. finite differences)

```
\partial T/\partial x \quad \Delta x \approx T \downarrow 1 - T \downarrow 2 = 293.1876 - 292.9056 = 0.2820??
```

- Arithmetic overflow (e.g. due to large number) a⁴/b³
- Code branches

if $(x-y < 10^{-9})$ then

Code changes

- declaration of all reals with _*ireals* (globally)
- introduction of ireals8 to use doubles where required
- mixed precision in radiation
- re-formulation of "SP-unfriendly" calculations, e.g.
 a↑4 / b↑3 =a (a/b)↑3
- new global variables: rprecision, repsilon
- rprecision as abortion criterion (currently not used)
- replace hardcoded local epsilons (e.g. 10⁻³⁰) by repsilon

repsilon usage

- global variable allows precision-dependent definition
- very small number above zero
 - set to 1e6*TINY = 1E-32 (SP) / 2E-302 (DP)
- mainly used in divisions to avoid division-by-zero, e.g.
 - zr = zdqr / (zdql + repsilon)
 - zsdau = zsvidep / MAX(zztau, repsilon)
- further used in IF-statements, e.g.
 - IF (rho > c1+epsy) THEN ...

repsilon usage

- so far, all epsilons in divisions replaced by *repsilon*
 - obvious purpose: avoid division by zero
- remaining epsilons mostly *epsy* (in assimilation)
 - all other local epsilons (often only used once of twice per definition) also replaced by *repsilon*
- option: non-global, but not-too-local epsilons (module variables)
 - epsy already is such a variable for data assimilation (data_obs_lib_cosmo)

repsilon occurrence

0

file (~.f90)	variable	value	#
near_surface	zepsi	1.0E-06	1
numeric_utilities	zeps	1.0E-15	7
numeric_utilities_rk	zeps	1.0E-15	17
numeric_utilities_rk	eps	1.0E-06	6
pp_utilities	eps	1.0E-15	12
src_correl_cutoff	epsy	1.0E-08	3
src_gscp	zeps	1.0E-15	3
src_lheat_nudge	epsilon	1.0E-35	2
src_mult_local	epsy	1.0E-08	2
src_mult_spread	epsy	1.0E-08	33
src_obs_proc_air	epsy	1.0E-08	1
src_obs_processing	epsy	1.0E-08	1
src_sing_local	epsy	1.0E-08	1
src_sing_spread	epsy	1.0E-08	8
src_soil	zepsi	1.0E-06	6
src_soil_multlay	zepsi	1.0E-06	12
src_soil_multlay	epsi	1.0E-06	4

Mixed-precision radiation

Problem: radiation doesn't work in SP (so far)

- becomes unstable after ~ +8h (in our setup)
- rather a technical (not physical) problem
- work-around: run critical parts in DP
- critical parts: inversion and coefficients

Sensitivity experiments

- Validation of code changes
- Setup of COSMO-7 with +72h lead time
- COSMO version 4.26
- Experiments
 - original version (OR)
 - modified version with reals as doubles (DP)
 - original version with random perturbations (PR)

Random perturbations

- Addition of missing _ireals removes random digits in DP
 - Hypothesis: main reason for deviations of DP from OR

2.0	2.0_ireals		
2.000000437165203	2.000000000000000		

- Simulate this effect by adding random fields => PR
 - Magnitude O(1.0E-7), added every time step
 - Fields: PP, T, U, V, W, QV, QC, QI, QR, QS, QG
- Compare deviations PR-OR to DP-OR

OR vs. DP and PR (+72h) pressure @ surface

σ

OR vs. DP and PR (+72h) temperature @ surface

D

OR vs. DP and PR (+72h) accumulated precipitation @ surface

Summary OR vs. double precision

- Deviations of PR and DP from OR of same magnitude
- Reasonable assumption: deviations of DP from OR due to additional _ireals (elimination of random digits beyond 1.0E-7)

Single vs. double precision (+12h) pressure @ surface

Single vs. double precision (+72h) pressure @ surface

Single vs. double precision (+12h) temperature @ surface

Single vs. double precision (+72h) temperature @ surface

Single vs. double precision (+12h) accumulated precipitation @ surface

Single vs. double precision (+72hr) accumulated precipitation @ surface

Q

Single vs. double precision

- Deviation growth in first +12h clearly larger with SP than with DP vs. original code (OR)
- After +72h deviations with SP still somewhat larger but comparable
- Ready for test suite and verification against observations!

Test suite

- COSMO-2 setup with experiments up to +120h
- 4 weeks in summer and winter
- Experiments with
 - COSMO 4.26 (ref)
 - double precision (dp)
 - single precision (sp)
 - sp without –Kieee (spi)
 - turn off strict IEEE conformance for floating point operations (e.g., sin, cos, exp, log,...)
 - spi with –Mfprelaxed (spf)
 - Mfprelaxed: relaxed precision in the calculation of some intrinsic functions

Verification with soundings

- Verification for summer and winter period (tool supports only up to +72h)
- Bias and std for RH, T, FF, DD, Z on 25 pressure levels
- Experiments show same results for both periods average over all stations
- Even station based verification shows no are only small differences

Example: T winter all soundings (+60h)

σ

Example: T summer at Payerne (+60h)

D

Example: RH summer at Payerne (+60h)

U

UA verification: COSMO—2 (v4.26) SP (summer 2012) The brained vert-2-tar/dp-00009-rot-12pL12obg-ext vert-2-tar/dp-00008-dp-12jL12obg-ext vert-2-tar/dp-00009-sp1-12pL12obg-ext vert-2-tar/dp-00009

Helee8ving/NO 4up 28, 2013

C SYNOP Verification

- Verification with all available SYNOP station in COSMO-2 domain
- Standard scores
- Experiments shows same results for summer period

Example: 10m wind speed summer

U

Same results for all 5 experiments

C SYNOP Verification

- Verification with all available SYNOP station in COSMO-2 domain
- Standard scores
- Experiments shows same results for summer period
- ...but winter period show differences between SP experiments and REF/DP experiments for 2m temp. and 2m dew point temp.

Example: dew point temp winter

U

significant difference between experiments
REF/DP better than SP's

Time-series TD_2M & T_2M +(99-120h)

O

Timings

	ref	dp%	sp%	spi%	spf%
Dyn. Computations	47.9	100%	52%	51%	51%
Add. Tend+Moist	13.5	102%	51%	52%	51%
Fast Waves	23.2	100%	51%	51%	51%
Communications Dyn	2.4	101%	55%	55%	55%
Barrier Waiting Dyn	4.7	101%	72%	54%	54%
Phy. Computations	10.8	110%	82%	69%	68%
Precipitation	3.0	100%	64%	57%	56%
Radiation	2.0	155%	150%	120%	119%
Turbulence	3.9	99%	63%	50%	49%
Others	9.5	101%	72%	68%	68%
Total	75.2	102%	60%	56%	56%

with ltime_barrier = .true.

- Data assimilation not yet tested
- COSMO crashes with SP & luse_rttov = .true. (technical issue only)

Summary & conclusions

- COSMO version 4.26 with support for user-defined working precision ready for test purposes
- new code shows same skill with double precision as original code
- marginal degradation in skill found with single precision during a limited period, will be investigated
- reduction of elapsed time to 60% with single precision (COSMO-2 setup)!
- performance penalty in radiation noticed, should be minimized