

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

OpenACC directives in COSMO

Xavier Lapillonne

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

an Bunduna adage mumuu seru

OpenACC compiler directives

OpenACC : Open standard, supported by 3 compiler vendors PGI, Cray, Caps

Why using directives ?

	GPU-Specific language (Ex: CUDA)	Compiler directives
Implementation, porting effort	Re-write	Incremental adaptation of existing code
Control over parallel execution	Yes	Yes
Control over memory hierarchy	Yes	No (automatic)
Software management	Often separate GPU and CPU code	Single source possible
Code maintenance/development	Requires understanding of GPU computing and new language	Retain original language, requires basic concept of GPU computing
Target Architecture	CUDA: Nvidia, OpenCL: multiple	Multiple

- OpenACC used for Physics, data assimilation, other parts of the time loop
- Parallelization: horizontal direction, 1 thread per vertical column
- Most loop structures unchanged, one only adds directives : port large part of the code
- For time critical parts (mostly in the physics) additional optimizations¹:
 - Loop restructuring
 - Removal of local automatic array
 - Scalar replacement
 - ...

Note : some of the GPU-optimized routines are slower on the CPU. For the moment we keep a separate GPU and CPU source for these parts.

Directives in COSMO²

- 3000 !\$acc directives
- 60 000 lines of code ported to GPU
- ¹ Lapillonne and Fuhrer, Parallel Processing Letters, under review

² thank to T. Diamanti, D. Leutwyler, C. Padrin , A. Roches, S. Schaffner.

Current status of Physics

Scheme	C-2	C-7	Status	Remark
microphysics - hydci_pp (ice scheme) - hydci_pp_gr (graupel)	x	x	done ready (standalone)	not ported yet in OPCODE
sub grid scale oro. (sso)	x	x	done	
radiation	x	x	done	
turbulence	x	x	done	only operational options
soil model - terra_multlay - terra1 - terra2 - seaice - flake_interface	x	x	done - - -	only operational options
convection - conv_tiedtke - organize_conv_kainfri - conv_shallow	x	x	work in progress done	
Boundary exchange	x	x	done	

Performance results using directives : Physics

- Test domain 263x92x60, 1h simulation.
- Socket to Socket comparison : 8 core Intel Sandy Bridge CPU vs K20 GPU
- Using 2 different compilers PGI and Cray

1 K20 GPU vs 1 Sandy Bridge CPU

- 90% of physics run time on original CPU code: microphysics, radiation and turbulence -> Higher optimization effort
- Overall speed up factor between 3.5x and 4.7x (depend also on input data)

Summary / Discussion

- Large parts of COSMO were successfully ported using OpenACC
- For the physics, additional optimizations were possible and we obtain good performance on GPU : 3.5x speed up on a node to node comparison
- Compute intensive parts perform better -> new possibilities for the physics
- The physics is now using different source files for CPU and GPU. We still need to determine how much could be shared

- Implement missing parametrizations in OPCODE (gsp_gr and tiedke_conv)
- Explore how to have as much shared code between CPU and GPU code
- Merge OpenACC work in COSMO official code

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thank you

Performance results using directives : Physics

- Test domain 128x128x60, 1h simulation.
- Socket to Socket comparison : 8 core Intel Sandy Bridge CPU vs K20 GPU

note : res. 128x128x60 time 1h run (=180 steps)						
	Physics	Microphysics	Radiation	Turbulence	Soil	copy-block
Sandy bridge	43.8	9.940	12.300	17.020	1.73	
Sandy bridge lblock_phys=T nproma=16	56.6	8.700	14.140	20.110	1.9	7.6
K20x (CCE)	9.23	1.300	2.130	3.060	0.81	8.47
K20 (PGI)	12.2	1.650	2.680	3.760	3.76	11.34
Speed up CCE	4.745	7.646	5.775	5.562	2.136	
Speed up PGI	3.59	6.02	4.59	4.53	0.46	