WG6 : Bringing back POMPA
developments to the COSMO code

Oliver Fuhrer and Xavier Lapillonne

o Overview

« ICON-COSMO Physics

 New permanent arrays

« Serialization (C++ validation)

ICON-COSMO Physics

« ICON and COSMO have different grids/data structures

* In order to shared the physics package new interfaces need
to be introduce : data field will be passed by arguments

« |ICON developers proposed to have only one horizontal
index inside the physics packages (block data)

« What are the implications for COSMQO ?

o Block structure in the physics

« Data fields are copied from the format f(ie,je,ke) to the block structure f
(nproma,ke), with nproma = (ie-2 nbound) x (je-2 nbound) / nblock.

» physics parametrization could be computed while data remains in the cache (on
CPU by selecting an appropiate value for nproma)

» organize_physics could be structured as follows:

/ Operations requiring neighbouring

call prepare_radiation information : ex averaging

call prepare_turbulence

do ib=1,nblock where data inside

call copy_to block / organise_scheme is in block form
call organize_gscp t_b(nproma,ke)

call organize radiation
call organize_turbulence
call copy_back

end do

Routines below organize_scheme
will be shared with ICON. Fields
are passed via argument list:

call fesft(t_b(:,:), ...

* Note : an omp parallelization could be easily introduced around the block loop
* This is the current implementation in the OPCODE branch

o COSMO-ICON Physics : 3 possible approaches

1. Keep i,j indices

« ICON would run with j loop
from 1 to 1

Implications:

* Only need to adapt shared
physics (only interface)

» Keep original
organize physics

» Lower performance on
GPUs

» May decrease ICON’s
performance

2. Full block physics
(single horiz. index)

Implications:

* Need to adapt (or remove)
all COSMO schemes (index
+ interface).

» Unique computation domain
for all physics
(istarpar:iendpar ?)

« Some options need to be
adapted: (ex nradcoarse)

« Straightforward for OpenMP

» Good for GPU

 All physics have the same
interface

* Need to deal with the copy
to block

3. Mixed block/nonblock

(single horiz. index)

» Keep two versions of
organize_physics

Implications:

* One block version with
only physics which are
shared with ICON

» One “original” where the
block physics are called
inside a | loop.

* Increase complexity

* Less work

POMPA RECOMANDATION

¥ COSMO-ICON Physics

* Whatever decision is made for the physics we need to have some time
schedule concerning its implementation in the official COSMO

« This is a critical aspect for the reintegration of the POMPA work

Other
* Move microphysics at the beginning of the physics

« Could we remove some of the NEC optimization ?

+

New permanent arrays

Problem : memory allocation is very costly on GPU

We've replaced all automatic arrays in parts of the code which runs on GPUs with
allocable arrays. The arrays are allocated for the full model run

Implication : significant increase of memory usage
COSMO has however a low memory footprint considering nowadays hardware:
E.g. COSMO-2 Opr uses only 13 GB when run on a single node

Practical implementation:

Added specific modules for each parts (e.g. each physics), containing the local
arrays together with an allocate and deallocate routines.

o Serialization Framework

» Used to validate the C++ dycore
» Serialization means converting data structures or objects into a format that can
be stored (in memory or on a file)

» We use serialization for unit-testing stencils against their
(e.g. in Fortran)

REFERENCE
init(f)

> savePoint(‘advect.in’)
serialize(f, velx, vely)

advect(f, velx, vely)

> savePoint(‘advect.out’)
serialize(f)

|
[dataser]

diffuse(f, kdiff)

output(f)

+

Unit-Testing

» The de-serialized fields can be read and used to check a new implementation
» This can be done for a single stencil (unit-testing)

UNIT-TEST

— savePoint(‘advect.in’)=——> setupTest
de-serialize(f, velx, vely)
savePoint(‘advect.out’)
de-serialize(fref) advect(f, velx, vely)

ASSERT(f == fref)

[---------- | 3 tests from AdvectionUnittest
[RUN | AdvectionUnittest.Do
initializing data field demanded_f _in
initializing data field demanded_vel_in
Initializing data_field demanded_f_out

[OK] AdvectionUnittest.Do (1734 ms)

o) Serialization Framework

* Would it be possible to include the serialization calls in the trunk ?

e (Calls would be embedded in a new module

¢ Other

* |nvert Relaxation and Assimilation

