
WG6 : Bringing back POMPA
developments to the COSMO code

Oliver Fuhrer and Xavier Lapillonne

Overview

•  ICON-COSMO Physics

•  New permanent arrays

•  Serialization (C++ validation)

ICON-COSMO Physics

•  ICON and COSMO have different grids/data structures
•  In order to shared the physics package new interfaces need

to be introduce : data field will be passed by arguments
•  ICON developers proposed to have only one horizontal

index inside the physics packages (block data)

•  What are the implications for COSMO ?

Block structure in the physics

•  Data fields are copied from the format f(ie,je,ke) to the block structure f
(nproma,ke), with nproma = (ie-2 nbound) x (je-2 nbound) / nblock.

•  physics parametrization could be computed while data remains in the cache (on
CPU by selecting an appropiate value for nproma)

•  organize_physics could be structured as follows:

call prepare_radiation
call prepare_turbulence
…

do ib=1,nblock
 call copy_to block
 call organize_gscp
 call organize_radiation
 call organize_turbulence
 call copy_back

end do

where data inside
organise_scheme is in block form
t_b(nproma,ke)

Routines below organize_scheme
will be shared with ICON. Fields
are passed via argument list:

 call fesft(t_b(:,:), …

Operations requiring neighbouring
information : ex averaging

•  Note : an omp parallelization could be easily introduced around the block loop
•  This is the current implementation in the OPCODE branch

COSMO-ICON Physics : 3 possible approaches

1. Keep i,j indices

•  ICON would run with j loop
from 1 to 1

Implications:
•  Only need to adapt shared

physics (only interface)
•  Keep original

organize_physics

•  Lower performance on
GPUs

•  May decrease ICON’s
performance

2. Full block physics
(single horiz. index)

Implications:
•  Need to adapt (or remove)

all COSMO schemes (index
+ interface).

•  Unique computation domain
for all physics
(istarpar:iendpar ?)

•  Some options need to be
adapted: (ex nradcoarse)

•  Straightforward for OpenMP
•  Good for GPU
•  All physics have the same

interface
•  Need to deal with the copy

to block

3. Mixed block/nonblock
(single horiz. index)
•  Keep two versions of

organize_physics

Implications:
•  One block version with

only physics which are
shared with ICON

•  One “original” where the
block physics are called
inside a j loop.

•  Increase complexity
•  Less work

POMPA RECOMANDATION

COSMO-ICON Physics

•  Whatever decision is made for the physics we need to have some time
schedule concerning its implementation in the official COSMO

•  This is a critical aspect for the reintegration of the POMPA work

Other
•  Move microphysics at the beginning of the physics

•  Could we remove some of the NEC optimization ?

New permanent arrays

•  Problem : memory allocation is very costly on GPU
•  We’ve replaced all automatic arrays in parts of the code which runs on GPUs with

allocable arrays. The arrays are allocated for the full model run
•  Implication : significant increase of memory usage
•  COSMO has however a low memory footprint considering nowadays hardware:
 E.g. COSMO-2 Opr uses only 13 GB when run on a single node

•  Practical implementation:
•  Added specific modules for each parts (e.g. each physics), containing the local

arrays together with an allocate and deallocate routines.

  Used to validate the C++ dycore
  Serialization means converting data structures or objects into a format that can

be stored (in memory or on a file)
  We use serialization for unit-testing stencils against their reference version

(e.g. in Fortran)

Serialization Framework

advect(f, velx, vely)

diffuse(f, kdiff)

init(f)

output(f)

savePoint(‘advect.in’)
serialize(f, velx, vely)

savePoint(‘advect.out’)
serialize(f)

data.ser

REFERENCE

  The de-serialized fields can be read and used to check a new implementation
  This can be done for a single stencil (unit-testing)

Unit-Testing

advect(f, velx, vely)

ASSERT(f == fref)

setupTest savePoint(‘advect.in’)
de-serialize(f, velx, vely)
savePoint(‘advect.out’)
de-serialize(fref)

data.ser

UNIT-TEST

[-‐-‐-‐-‐-‐-‐-‐-‐-‐-‐]	 3	 tests	 from	 AdvectionUnittest	
[RUN]	 AdvectionUnittest.Do	
initializing	 data	 field	 demanded_f_in	
initializing	 data	 field	 demanded_vel_in	
Initializing	 data_field	 demanded_f_out	
[OK]	 AdvectionUnittest.Do	 (1734	 ms)	

Serialization Framework

•  Would it be possible to include the serialization calls in the trunk ?

•  Calls would be embedded in a new module

Other

•  Invert Relaxation and Assimilation

