STATISTICAL MODELS and VERIFICATION

Mihaela NEACSU & Otilia DIACONU

ANM/LMN/AMASC

COSMO-September 2013

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

SUMMARY

2 MOS - system

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

COSMO-September 2013 2 / 48

3 🕨 🖌 3 🕨

SUMMARY

2 MOS - system

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

COSMO-September 2013 3 / 48

A B M A B M

AMASC group - Main activities

STATISTICAL POST_PROCESSING - cooperation with Météo France

- MOS_ECMWF 00 and 12 UTC
- MOS_ARPEGE 00,06,12,18 UTC
- MOS_ALADIN 00 and 12 UTC
- MOS_EPS

FORECAST VERIFICATION - short and medium range

- final forecasts
- user delivered forecasts
- MOS forecasts
- NWP forecasts

Other duties: comparative display of the direct model output: ECMWF, ARPEGE, ALADIN, ALARO, COSMO RESULTS - dedicated web site http://neptun.meteoromania.ro

AMASC group - Main activities

STATISTICAL POST_PROCESSING - cooperation with Météo France

- MOS_ECMWF 00 and 12 UTC
- MOS_ARPEGE 00,06,12,18 UTC
- MOS_ALADIN 00 and 12 UTC
- MOS_EPS

FORECAST VERIFICATION - short and medium range

- final forecasts
- user delivered forecasts
- MOS forecasts
- NWP forecasts

Other duties: comparative display of the direct model output: ECMWF, ARPEGE, ALADIN, ALARO, COSMO RESULTS - dedicated web site http://neptun.meteoromania.ro

AMASC group - Main activities

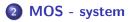
STATISTICAL POST_PROCESSING - cooperation with Météo France

- MOS_ECMWF 00 and 12 UTC
- MOS_ARPEGE 00,06,12,18 UTC
- MOS_ALADIN 00 and 12 UTC
- MOS_EPS

FORECAST VERIFICATION - short and medium range

- final forecasts
- user delivered forecasts
- MOS forecasts
- NWP forecasts

Other duties: **comparative display** of the direct model output: ECMWF, ARPEGE, ALADIN, ALARO, COSMO


RESULTS - dedicated web site http://neptun.meteoromania.ro

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

SUMMARY

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

COSMO-September 2013 5 / 48

A B M A B M

The main features

- mathematically simple, yet powerful
- need historical record of observations at forecast points (Hopefully a long, stable one!)
- equations are applied to future run of similar forecast model

Predictands

- temperatures: spot temperatures(every 6h),extreme temperatures
- wind: direction and speed. MOS equation are developped for U and V components and speed.
- total cloudiness: 3 classes(clear sky, variable sky(scattered) and cloudy sky)
- total precipitation in 6h: 3 classes(No pp, small amounts, moderate/intense amounts)

The main features

- mathematically simple, yet powerful
- need historical record of observations at forecast points (Hopefully a long, stable one!)
- equations are applied to future run of similar forecast model

Predictands

- temperatures: spot temperatures(every 6h),extreme temperatures
- wind: direction and speed. MOS equation are developped for U and V components and speed.
- total cloudiness: 3 classes(clear sky, variable sky(scattered) and cloudy sky)
- total precipitation in 6h: 3 classes(No pp, small amounts, moderate/intense amounts)

Predictors

- A long list..., derived from NWP Forecasts: MSLP,Geopotential, Temperatures...
- there are a total of **54** primary potential predictors and **15** derived predictors.

Statistical Methods used

- Multiple Linear Regression (Forward Selection) for temperatures and wind
- Discriminant Analysis (Forward Selection) for total cloudiness and total precipitation
- Canonical Analysis to summarize spatial information of **16** grid points around the station
- the **equations** are developped for each RUN/parameters/stations/forecast time

Predictors

- A long list..., derived from NWP Forecasts: MSLP,Geopotential, Temperatures...
- there are a total of **54** primary potential predictors and **15** derived predictors.

Statistical Methods used

- Multiple Linear Regression (Forward Selection) for temperatures and wind
- Discriminant Analysis (Forward Selection) for total cloudiness and total precipitation
- Canonical Analysis to summarize spatial information of **16** grid points around the station
- the **equations** are developped for each RUN/parameters/stations/forecast time

MOS - update and dissemination

- all MOS systems are updated every two years *cooperation programme* with Météo France
- MOS results are disseminated on the web-site : maps formats and text in various agregation formats

MOS - update and dissemination

- all MOS systems are updated every two years *cooperation programme with Météo France*
- MOS results are disseminated on the web-site : maps formats and text in various agregation formats

MOS systems - results - maps examples

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

9 / 48

MOS systems - results - text examples - by region

											2			Pr	og	no	oze	IVI	0	5 po	e statii	gru	upate	e pe	ree	JIU
							Mo	del	MO	S:	EC	MW	F 0	RE	GI	UNI	EA:	BA	NAT		© RUN	00	UTC 0 A	vans	regiu	ne: <mark>-</mark>
E	MWF *													20121												
LEGENDA Nebulozitato BANAT	e : S=S	enin	, V=	Vari	abil	, N=N	loros		Preci	pita	tii	: F	= Fai	ra, s	s=sla	be,	M=Mod	erate	9							
DATA DE VALIDITATE:		20)1211	115		2	01213	116		20	1211	17		2	20121	118	E	2	0121	.119						
ORA:	00	06	12	18	00	06	12	18	60	06	12	18	00	06	12	18	00	06	12	18						
SINICOLAU_MARE																										
Tmin/Tmax Nebulozitate Precipitatii Prob.Precip(%) Viteza vant (m/s)	F 79 0	N F 56 0	N F 80 1	S F 78 1	N M 70 0	93 1	S F 88 1	68	80 1	90 1 1	80 2	2	90 2	73 2	68 4	69 2	74	2	5 F 67 2	11						
Directie vant (deg) JIMBOLIA	70]		90	80	39	49	80 1	10	120 1	10 1	30 1	30	130	130	150	140	130	119	140	39						
Tmin/Tmax Nebulozitate Precipitatii Prob.Precip(%) Viteza vant (m/s)	-99 - 1 90 1	99 0 119 1	80 1 29	69 0 79	-99 2 49	-99 1 80	90 1 110 1	71		99 1 1 29 14	84 2 40 1	81 2 40	-99 3 89	-99 2 130	66 4 159	71 2 160	-99 2 130	2 130	S F 69 3	F 59 1						
TIMISOARA																										
Tmin/Tmax Nebulozitate Precipitatii Prob.Precip(%) Viteza vant (m/s) Directie vant (deg)	F 78 1	N F 71 1	N S 86 1	L.7 V F 74 49	79 1	1	12 5 F 89 1 29	11	90 1	5 F 82 1	S F 85 1	.1 S F 84 1 90	S F 91 1	1	S F 72 2	4.0 S F 71 1 120	S F 75		S F 71 2	F 57 1						

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

MOS systems - results - text examples - by station

Prognoze MOS pe statii

STATIA: Buc_Baneasa

Avans statie: + - CLICK-AFISAR

DATA DE VALIDITATE:		į.	20121	1116	1	2	2012	1117		2	0121	1118	1		2012	1119	1		2	012	1120
ORA:		06	12	18	1 00		12	18	00	06	12	18	1 6	0 0	5 12	18	T.	00		12	18
oron.			· · · ·	10	1 00			10 1					1								
BUC BANEASA																					
Tmin/Tmax		-1.9		11.0	1	-1.6		11.2		0.6		10.4	Ĩ.	4.	2	10.2	L		4.0		9.3
Nebulozitate	5	N	5	S	i s	S	S	si	N	N	N	N	i i	N I	I N	N	i	N	Ν	N	5
Tmin/Tmax Nebulozitate Precipitatii	F	F	F	F	İ F	F	F	S F	F	N F	F	F	Ē	N I M I	4 M		i.	F	S	S	F
Prob.Precip(%)	98	98	96	91	92	93	93	89 I	72	74	68	67	1 6	3 5	9 66	66	i		57		79
Viteza vant (m/s)	1	0	1	1	1	1	2	1	1	2	2	1	Î.	1	1 2	2	i.	2	2	2	2
Directie vant (deg)	269	289	149	39	i 39	39	79	49 İ	39	29	59	49	i 3	9 4	9 69	39	i.	39	39	69	49
DATA DE VALIDITATE:			20121	1116	1	2	2012	1117		2	0121	1118	Ì								
ORA:	00	06	12	18	00	06	12	18	00	06	12	18	1								
BUC BANEASA					05252								2								
Tmin/Tmax		-0.1		6.2	1	-2.2		3.1	8	0.9		5.9	1								
Nebulozitate Precipitatii	S	N	N	S	j s	N F	N	S	N	N	N	N	î.								
Precipitatii	F	F	F	F	F	F	F	Εİ	F	F	F	F	Ľ								
Prob.Precip(%)	93	92	95	91			95	94	72	67	84	59	L								
Viteza vant (m/s)	2	1	1	1	j 1	1	2	1	2	1	2	1	T.								
Directie vant (deg)				59	i 39	29	79	49 İ	29	19		49									

SUMMARY

MOS - system

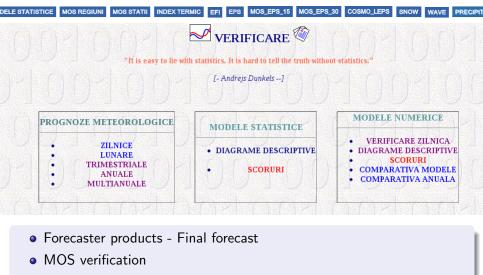
3

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

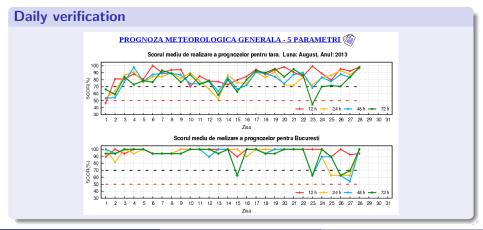
COSMO-September 2013 12 / 48

Why verify ? - Main purposes


- Administrative purposes
- Scientific purpose
- Economic purposes

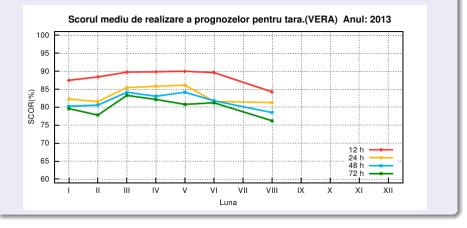
"Producing forecasts without verifying them systematically is an implicit admission that the quality of the forecasts is a low priority" - Harold E. Brooks,NOAA/National Severe Storms Laboratory

.. reasons to verify meteorological forecasts


- help operational forecasters understand model biases and select models for use in different conditions
- help "users" interpret forecasts
- identify forecasts weaknesses, strengths differences

MOS & VERIF

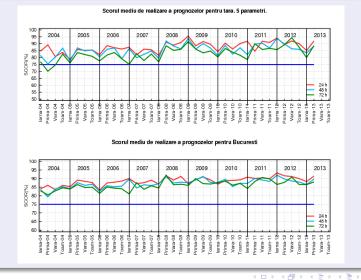
Numerical models verification


- Final forecast forecaster product
- Method: adaptation of the method described in: K.Colls and all,1981: A Forecast verification procedure for public weather forecasts, Australian, *Met.Mag, Vol 29,No.1, 9-25*

Mihaela NEACSU & Otilia DIACONU (ANI

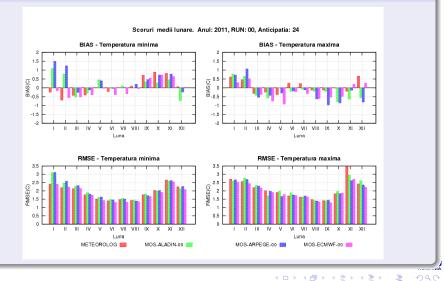
MOS & VERIF

Monthly scores



3

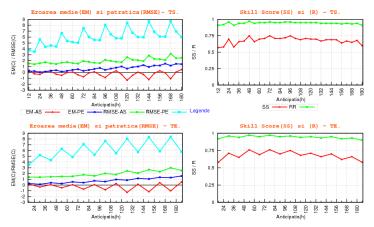
∃ >


Seasonal-multi-annual scores

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

MOS against forecaster - standard scores

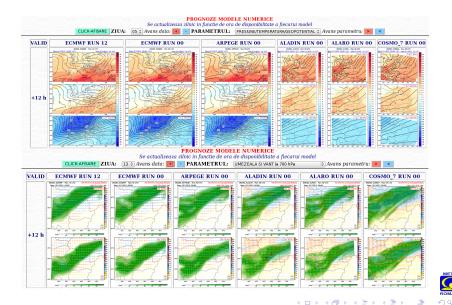


Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

MOS verification - VERMOD-standard scores

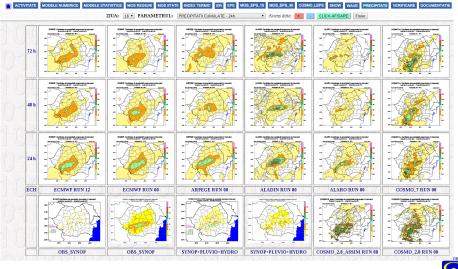
Verificarea prognozei temperaturilor sextiorare - TS - si a temperaturilor extreme - TE -MOS - ECMWF, RUN 12 - AUGUST - 2012



3

<ロト < 同ト < ヨト < ヨト

Comparative DMO display - a few parameters

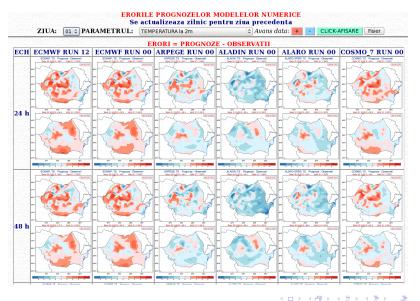

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

COSMO-September 2013

20 / 48

DMO - verification - daily - visual

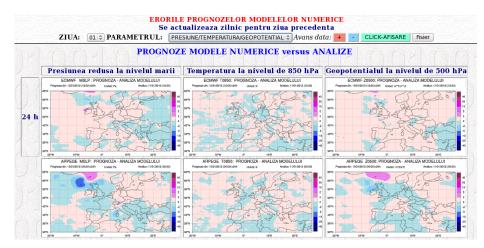


3

MOS & VERIF

<ロト < 同ト < ヨト < ヨト

DMO - daily errors against observations



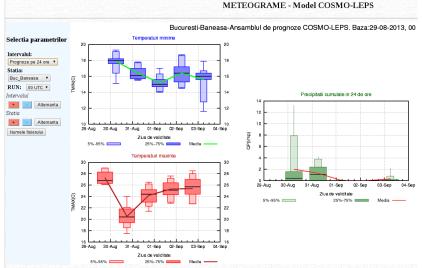
MOS & VERIF

22 / 48

DMO - daily errors against analysis

<ロト < 同ト < ヨト < ヨト

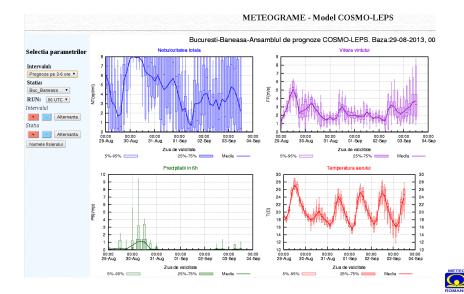
Purpose of showing comparative maps


- help forecaster making decission
- use of the same plotting area for all models forecasts and observations
- use the same threshold and the same color palette
- make faster and easier comparison between models forecasts and/or observations
- all small maps can be zoomed

Parameters:

- 24,12,6 and 3 h total amounts of precipitation
- mslp, geopotential and temperature 850 hPa and 500 hPa
- relative humidity and wind(speed and direction) at 10m, 700 hPa
- CAPE and MU

COSMO-LEPS -meteograms - a few graphical products



3

< ロ > < 同 > < 三 > < 三

COSMO-LEPS -meteograms - a few graphical products

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

< ロ > < 同 > < 三 > < 三 >

26 / 48

VERMOD 1.0 - Direct Model Verification system

The system uses:

- daily files, monthly archives
- shell scripts, programms and routines in Fortran (developed in AMASC group)
- R scripts and Gnuplot for graphics

A. Data

Observations

- the system accepts observations from whatever source provided that they are compatible with forecasts
- in the current version SYNOP observations for parameters: temperature, wind (direction, speed, components), cloudiness, precipitation - amounts in different intervals: 6, 12, 24 hours
- date are subject to control procedures: climatological limits, minimum and maximum limits of the parameter

Forecasts

- GRIB format cut out Romania domain for ECMWF and ARPEGE models (the same domain is used forthe other models)
- is made interpolation in station with nearest grid point method: same procedure for all models
- forecasts turns in the same units as the observations (temperature in degrees Celsius, rainfall in I/sqm)

MOS & VERIF

A. Data

Observations

- the system accepts observations from whatever source provided that they are compatible with forecasts
- in the current version SYNOP observations for parameters: temperature, wind (direction, speed, components), cloudiness, precipitation - amounts in different intervals: 6, 12, 24 hours
- date are subject to control procedures: climatological limits, minimum and maximum limits of the parameter

Forecasts

- GRIB format cut out Romania domain for ECMWF and ARPEGE models (the same domain is used forthe other models)
- is made interpolation in station with nearest grid point method: same procedure for all models
- forecasts turns in the same units as the observations (temperature in degrees Celsius, rainfall in I/sqm)

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

A. Data

Data format- Observations

TS SYN00 4 163 38 F6.2 (I5.5, 4(1X, F6.2)) -99.9008 09 01 00 00 08 09 01 00 00 08 09 01 06 00 08 09 01 06 00 08 09 01 12 00 08 09 01 12 00 08 09 01 18 00 08 09 01 18 00 15000 12.00 12.60 21.00 18.10 15004 8.80 10.20 23.20 16.60 15007 12.00 12.50 20.90 14.90 15010 8.30 11.40 24.00 18.70 15014 10.10 11.90 23.10 16.90 15015 8.30 12.50 21.80 15.10

3

Mihaela NEACSU & Otilia DIACONU (ANI

A. Data format

Forecasts

TS DMCI	EP 29 1	63 30						
F8.2 (I	5.5, 8(1	X, F8.2),	2(/,5X,	8(1X,	F8.2)),/,5	X, 5(1X,	F8.2))	
-99.90								
08 09 01	00 00 08	09 01 12	00					
08 09 01	00 00 08	09 01 18	00					
08 09 01	00 00 08	09 02 00	00					
08 09 01	00 00 08	09 02 06	00					
			• • •					
08 09 01	00 00 08	09 08 06	00					
08 09 01	00 00 08	09 08 12	00					
15000	20.52	14.78	12.06	14.84	24.88	17.56	13.17	16.74
	25.94	19.05	15.25	17.33	26.62	20.45	14.77	18.47
	28.09	21.91	17.35	19.58	29.95	23.28	18.25	20.69
	31.40	23.95	19.55	21.25	29.66			
15004	21.40	19.11	12.00	17.18	23.79	16.70	13.52	18.70
	24.83	17.96	15.08	19.66	26.23	19.24	16.80	21.08
	27.20	20.70	17.85	21.40	28.65	22.75	20.80	22
	30.34	23.01	20.47	24.04	29.10			
					< □	 < □ < □ 	▶ ★ 臣 ▶ …	≣ • ୭ ۹ (°

Steps

 sincronizing in time the generation of the sets Forecasts -Observations

② the descriptive diagrams are made for a number of stations

Ithe calculation of the specific scores, depending on the number of the parameters, for the three types of stratifications:

on each corespondent region of the CMR area of observation

Steps

 sincronizing in time the generation of the sets Forecasts -Observations

- **2** the descriptive diagrams are made for a number of stations
- Ithe calculation of the specific scores, depending on the number of the parameters, for the three types of stratifications:

n each corespondent region of the CMR area of observatio

Steps

- sincronizing in time the generation of the sets Forecasts -Observations
- **2** the descriptive diagrams are made for a number of stations
- It he calculation of the specific scores, depending on the number of the parameters, for the three types of stratifications:
 - on each station
 - on each corespondent region of the CMR area of observation
 - on each country stations

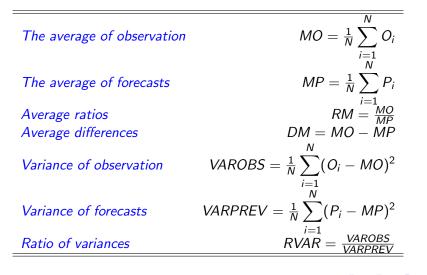
Steps

- sincronizing in time the generation of the sets Forecasts -Observations
- **2** the descriptive diagrams are made for a number of stations
- It he calculation of the specific scores, depending on the number of the parameters, for the three types of stratifications:
 - on each station
 - on each corespondent region of the CMR area of observation
 - on each country stations

Steps

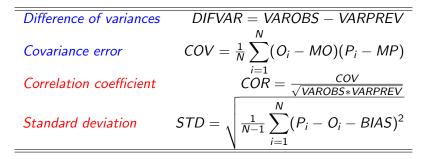
- sincronizing in time the generation of the sets Forecasts -Observations
- **2** the descriptive diagrams are made for a number of stations
- It he calculation of the specific scores, depending on the number of the parameters, for the three types of stratifications:
 - on each station
 - on each corespondent region of the CMR area of observation

on each country stations


Steps

- sincronizing in time the generation of the sets Forecasts -Observations
- **2** the descriptive diagrams are made for a number of stations
- It he calculation of the specific scores, depending on the number of the parameters, for the three types of stratifications:
 - on each station
 - on each corespondent region of the CMR area of observation
 - on each country stations

Analysis - continuous parameters


For a set P_i and O_i the following scores are calculated:

34 / 48

Analysis - continuous parameters

Analysis - continuous parameters

 $BIAS = \frac{1}{N}\sum(P_i - O_i)$ Bias - Average error i=1 $MAE = \frac{1}{N} \sum |P_i - O_i|$ MAE - Absolute average error i=1
$$\begin{split} MSE &= \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)^2 \\ RMSE &= \sqrt{MSE} \end{split}$$
MSE - Mean Squared error RMSE - Root mean square error $\sum (P_i - O_i)$ $RV = \frac{\overline{i=1}}{N}$ **RV-** Variance reduction $\sum(MO-O_i)$ i=1

36 / 48

Analysis - categorical parameters (clasess/categories)

For a set P_i and O_i the tabel of contingency is calculated:

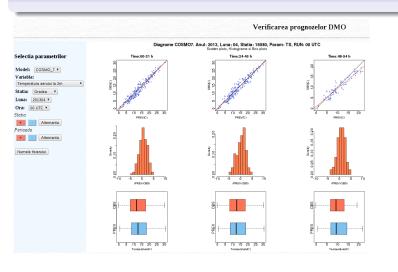
	Observations		
Forecasts	YES	NO	TOTAL
YES	а	b	a+b
NO	С	d	c+d
TOTAL	a+c	b+d	a+b+c+d=n

Analysis- categorical parameters- Associated scores

Score name	Definition
Probability of observation	$s = \frac{a+c}{n}$
Probability of forecast	$r = \frac{a+b}{n}$
Bias	$Bias = rac{a+b}{a+c}$
Percentage of success	$H = \frac{a}{a+c}$
False alarm ratio	$FAR = \frac{b}{a+b}$
False	${\sf F}=rac{b}{b+d}$
Percentage correct	$PC = \frac{a+d}{n}$
Heidke Scor	$HS = \frac{PC-E}{1-E}$

where E is PC hazard forecasting

э

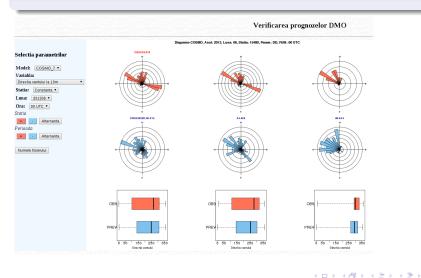

Analysis- categorical parameters- Associated scores

Score name	Definition
Critical success indicator	$CSI = \frac{a}{a+b+c}$
GSS or ETS	$ETS = rac{a-ar}{a+b+c-ar}$
	where $ar = \frac{(a+b)(a+c)}{n}$
Yule's Q	where $ar = rac{(a+b)(a+c)}{n} Q = rac{ad-bc}{ad+bc}$
Odds Ratio - OR	$OR = \frac{ad}{bc}$

э

Diagrams-examples

40 / 48

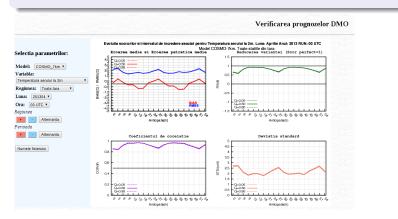

3

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

< ロ > < 同 > < 回 > < 回 > < 回 > <

Diagrames descriptive-examples

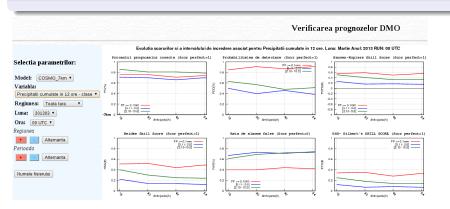


3

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

Monthly scores-examples

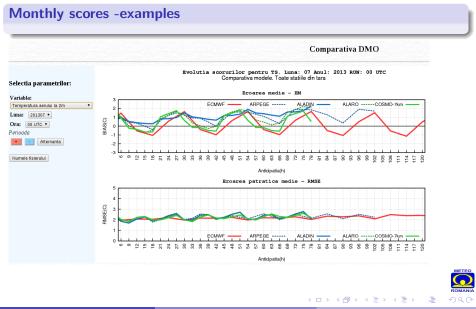

Mihaela NEACSU & Otilia DIACONU (ANI

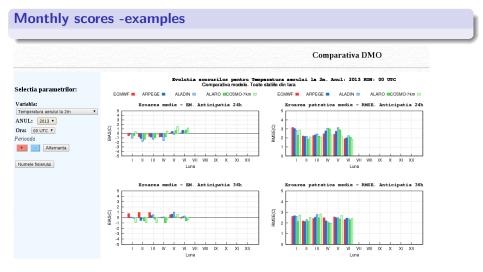
MOS & VERIF

3

<ロト < 同ト < ヨト < ヨト

Monthly scores-examples




э

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

< ロ > < 同 > < 三 > < 三 >

э

< ロ > < 同 > < 三 > < 三 >

SUMMARY

3

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

A B M A B M COSMO-September 2013 46 / 48

TO DO...

Statistical postprocessing

- calibration of MOS_EPS some research using BMA
- use Kalman filter on MOS output (for temperature)
- more MOS_MIXTE for now (ECMWF+ARPEGE) is in use
- to improve efficient use of VarEPS

Verification

- improve our VERMOD software
- database for verification
- MOS_EPS verification
- explore other verification methods: MODE, Wawelets,
- some research with MODE METv4.0-ncar, on precipitation, using ALADIN

TO DO...

Statistical postprocessing

- calibration of MOS_EPS some research using BMA
- use Kalman filter on MOS output (for temperature)
- more MOS_MIXTE for now (ECMWF+ARPEGE) is in use
- to improve efficient use of VarEPS

Verification

- improve our VERMOD software
- database for verification
- MOS EPS verification
- explore other verification methods: MODE, Wawelets,
- some research with MODE METv4.0-ncar, on precipitation, using AI ADIN

3

http://neptun.meteoromania.ro

Thank you for your attention !

3

Mihaela NEACSU & Otilia DIACONU (ANI

MOS & VERIF

A 3 b COSMO-September 2013 48 / 48