

TERRA

Soil Vegetation Atmosphere Transfer across Models and Scales

DWD contribution

COSMO-GM 2013

Grid size

- Efficient and reliable SVAT scheme, includes relevant SVAT processes
- Integrated in the NWP process (DA, MOS, ensemble)
- Long-time experience and development in operational environment exist
- Operational requirements slow down development process
- Basis for external developments special applications (stream flow, urban model, 3D-soil, dynamic vegetation, soil chemistry)

TERRA – Efficiency

- Surface heterogeneity (TILE approach) and ML-SNOW
- Vegetation (roots, interception, NDVI climatology)
- Application of high-resolution input data sets (GlobCover-land use, HWSD heterogeneous soil)
- One source code many scales: SCM, 2D, 3D (100m 100km grid-size)
- Using uncertainties in input data sets for stochastic physics approach and for model calibration
- Model evaluation IFS analysis, intercomparison, SRNWP

TERRA no-Tiles: HOM-SOIL

TERRA Tiles: HOM-SOIL

TERRA Tiles: HET+SUB-SOIL

HWSD – Sand fraction

Sand fraction (0-30cm)

Sand fraction deep soil

TERRA – VG hydraulics

TERRA – VG hydraulics

Diffusivity m²/s

Conductivity m/s

NDVI MONTHLY MEAN INTERVAL 0-1 ICON Extpar_0006_R03B07_G_pre2_0_GLC2000 mean: 0.09 std: 0.20 min: 0.00 max: 0.97

2.949.120 cells

20.480 cells

TERRA - Interception and surface water

Bucket approach for interception and surface water store

$$\frac{\Delta W_i}{\Delta t} = I + E_i - D$$

 $\frac{\Delta W_p}{\Delta t} = D + (1 - \sigma_v)P_r - I_g + E_p$

DWD 20120620 0000 0-36 h surface 0 TOT_PREC kg m-2 mean: 4.39 std: 8.34 min: 0.00 max: 293.13

DWD 20120620 0000 36-36 h surface 0 W_l kg m-2 mean: 0.09 std: 0.33 min: 0.00 max: 3.46

ICON DIFF CLCT

DWD DIFF CLCT [%] 20120620 0000 36 ROUTI-EXP mean: -0.60 std: 17.68 min: -100.00 max: 100.00

- Efficient and reliable SVAT model
- Continous improvement of ICON version within COSMO using shared physics library 2014
- Integrated in the NWP process
- "State of the art" SVAT processes for NWP included (TILE, HWSD-SOIL, VEG-DYN, ML-SNOW)
- Active development of new features at NWP centers and research institutes with free of charge support from DWD
- Integration in COSMO and CLM community

- SVAT model intercomparison
- Collaboration with WG3a Surface Atmosphere Transfer (resolved vegetation)
- Implementation of advanced soil properties data sets (e.g., Harmonized World Soil Database)
- Stochastic physics in TERRA
- Horizontal transports, implementation of soil water interflow, base flow, and ground table.

State of the art, reliable, and efficient SVAT model, with a growing and vital user and development community

TERRA - Versions

	1 \/4 4	2008/07/16 Ulrich Schaettler	IV4 18	2011/05/26 Ulrich Schaettler				
	I Splitting of	of a loop in Section I 4 3b (m. styp is not defined for sea	1 Bun the initial steps also for ndfi=1, when nstart > 01					
	points			I Changed the code owner				
	I and must	not occur together with llandmask in the same IF-	IV/ 20 2011/08/31 Juergen Helmert					
				Eliminated use of t 2m and use lowest atmospheric layer				
		2008/12/12 Ulrich Schaettler	now (as is in GME)					
	! V = 1	re still some loops left with llandmask and musture in	L to remove dependency on diagnostic quantity to 2m					
	! There were still some loops left with liandmask and m_styp in			1 V/4 22 2012/05/10 Oliver Eubrer, Burkbardt Beekel				
		2000/07/16 Ultrich Schoottlar, Christian Ballmann	! V4_23	2012/05/10 Oliver Fullier, Burkhardt Rocker				
	! V4_9		Removed obsolete Fortran leatures (OF)					
		Jali to collapse loops		n for multi layer show model in case of restart (BR)				
	! V4_10	2009/09/11 Constian Boilmann	! V4_25	2012/09/28 Anne Roches, Oliver Funrer, Ulrich				
		omplier directive to use option _on_add for NEC	Blanak	El al a de a Marchalla de la				
	! V4_11	2009/11/30 Ekaterina Machulskaya, Juergen Helmert,	!	Ekaterina Machulskaya				
	Lucio Torrisi			! Replaced qx-variables by using them from the tracer module				
! Implementation of multi-layer snow model (EM)			! Added hail rate (in case of two-moment microphysics) to the					
	! Use of an external parameter field for stomata resistance (JH)			! precipitation quantities at the ground where it seems				
	! Implementation of ground water as lower boundary of soil column			necessary.				
and			! Further developments in the multi-layer snow model (EM)					
	! soil moisture dependent heat conductivity of the soil (JH)			! V4_26 2012/12/06 Burkhardt Rockel, Ulrich Schaettler				
! Save additional fluxes and stomata resistance to global memory			Initialize h_snow in case of restart					
for output (LT)			! Correct indices for gravity pre-setting (BR)					
	! V4_12	2010/05/11 Ulrich Schaettler, Ekaterina Machulskaya	! Adapted variable names of multi-layer snow model to					
	! Renamed	to to to melt because of conflicting names	corresponding					
	! Renamed prs min to rsmin2d because of conflicting names			! short names for I/O (US)				
! Update of the new snow model (EM)			! V4 27 2013/03/19 Astrid Kerkweg, Ulrich Schaettler					
	! V4 13	2010/05/11 Michael Gertz	! MESSy ir	nterface introduced				
	! Adaptions	s to SVN	,					
	! V4 15	2010/11/19 Ulrich Schaettler (from H-J Panitz)						
	! Introduce	d snow melt and ibot w so						

ECMWF Newsletter No. 127 – Spring 2011

b Boreal forest a Savannah vegetation and sandy soil 0.35 0.35 0.3 0.3 0.25 0.25 Soil moisture Soil moisture 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 TESSEL HTESSEL Observations 0. 0-Jul 97 Jul 98 Jul 99 Jul 00 Jul 01 Jul 02 Jul 03 Jul 04 Jul 90 Oct 89 Jan 90 Apr 90

Figure 2 Evolution of soil moisture in TESSEL and HTESSEL in terms of volumetric content (m³/m³) compared to observations for two contrasting sites used for field experiments: (a) savannah vegetation and sandy soil (SEBEX, Sahel) and (b) boreal forest (BERMS, Canada).

GIANPAOLO BALSAMO, SOUHAIL BOUSSETTA, EMANUEL DUTRA, ANTON BELJAARS, PEDRO VITERBO, BART VAN DEN HURK

Impact of the SVAT model: IFS

Impact of the SVAT model: IFS

ECMWF Newsletter No. 127 - Spring 2011

METEOROLOGY

Figure 7 Mean annual 2-metre temperature errors in a long integration compared to ERA-Interim for (a) TESSEL (b) HTESSEL

1 yr, T159 ~125 km, daily specified SST

GIANPAOLO BALSAMO, SOUHAIL BOUSSETTA, EMANUEL DUTRA, ANTON BELJAARS, PEDRO VITERBO, BART VAN DEN HURK

Soil vegetation processes in TERRA

Soil water transport Rijtema model in TERRA

$$\frac{\partial w_l}{\partial t} = \frac{1}{\rho_w} \frac{\partial F}{\partial z} \qquad F = -\rho_w \bigg[-D_w(w_l) \frac{\partial w_l}{\partial z} + K_w(w_l) \bigg]$$

soil water change

soil water flux, Richards equation

$$D_w(w_l) = D_0 \ exp \ \left[D_1(w_{PV} - \bar{w}_l) / (w_{PV} - w_{ADP}) \right]$$

soil water diffusivity, Rijtema (1969)

 $K_w(w_l) = K_0 \ exp \ \left[K_1(w_{PV} - \bar{w}_l) / (w_{PV} - w_{ADP}) \right]$ soil water conductivity, Rijtema (1969)

Soil water transport van Genuchten model

$$\frac{\partial w_l}{\partial t} = \frac{1}{\rho_w} \frac{\partial F}{\partial z}$$

$$F = -\rho_w \left[-D_w(w_l) \frac{\partial w_l}{\partial z} + K_w(w_l) \right]$$

soil water change

soil water flux, Richards equation

$$K_{r} = \frac{\{1 - (\alpha \cdot h)^{n-1} \cdot [1 + (\alpha \cdot h)^{n}]^{-m}\}^{2}}{[1 + (\alpha \cdot h)^{n}]^{\frac{m}{2}}} \qquad \left(m = 1 - \frac{1}{n}\right)_{-} K_{r} = \frac{K}{K_{s}}$$

Soil water transport van Genuchten model

$$\frac{\partial w_l}{\partial t} = \frac{1}{\rho_w} \frac{\partial F}{\partial z} \qquad F = -\rho_v$$

$$F = -\rho_w \left[-D_w(w_l) \frac{\partial w_l}{\partial z} + K_w(w_l) \right]$$

soil water change

soil water flux, Richards equation

Determination of required soil parameters

$$\theta_r \quad \theta_s \quad \alpha \quad n \quad K_s$$

Soil properties – Option 1

J.H.M. Wösten et al. / Geoderma 90 (1999) 169-185

Table 4

Mualem-van Genuchten parameters for the fits on the geometric mean curves

82	$\theta_{ m r}$	$\theta_{\rm s}$	α	п	m	1	K _s
Topsoils							
Coarse	0.025	0.403	0.0383	1.3774	0.2740	1.2500	60.000
Medium	0.010	0.439	0.0314	1.1804	0.1528	-2.3421	12.061
Mediumfine	0.010	0.430	0.0083	1.2539	0.2025	-0.5884	2.272
Fine	0.010	0.520	0.0367	1.1012	0.0919	-1.9772	24.800
Very Fine	0.010	0.614	0.0265	1.1033	0.0936	2.5000	15.000
Subsoils							
Coarse	0.025	0.366	0.0430	1.5206	0.3424	1.2500	70.000
Medium	0.010	0.392	0.0249	1.1689	0.1445	-0.7437	10.755
Mediumfine	0.010	0.412	0.0082	1.2179	0.1789	0.5000	4.000
Fine	0.010	0.481	0.0198	1.0861	0.0793	-3.7124	8.500
Very Fine	0.010	0.538	0.0168	1.0730	0.0680	0.0001	8.235
Organic ^a	0.010	0.766	0.0130	1.2039	0.1694	0.4000	8.000

^aWithin the organic soils no distinction is made in topsoils and subsoils.

Hydraulic properties

Figure 7.3 Hydraulic properties of TESSEL and HTESSEL: (a) Diffusivity and (b) conductivity. The (+) symbols on the curves highlight (from high to low values) saturation, field capacity permanent wilting point.

IFS documentation