

TERRA-ML Developments 2013

Steffen Kothe

Goethe University Frankfurt, Institute for Atmospheric and Environmental Sciences

kothe@iau.uni-frankfurt.de

with contributions by

Jan-Peter Schulz, Julian Tödter, Stefan Krähenmann Goethe University Frankfurt, Institute for Atmospheric and Environmental Sciences

> Sebastian Schubert Potsdam Institute for Climate Impact Research

> > Kristina Trusilova German Meteorological Service

> > > Hendrik Wouters KU Leuven

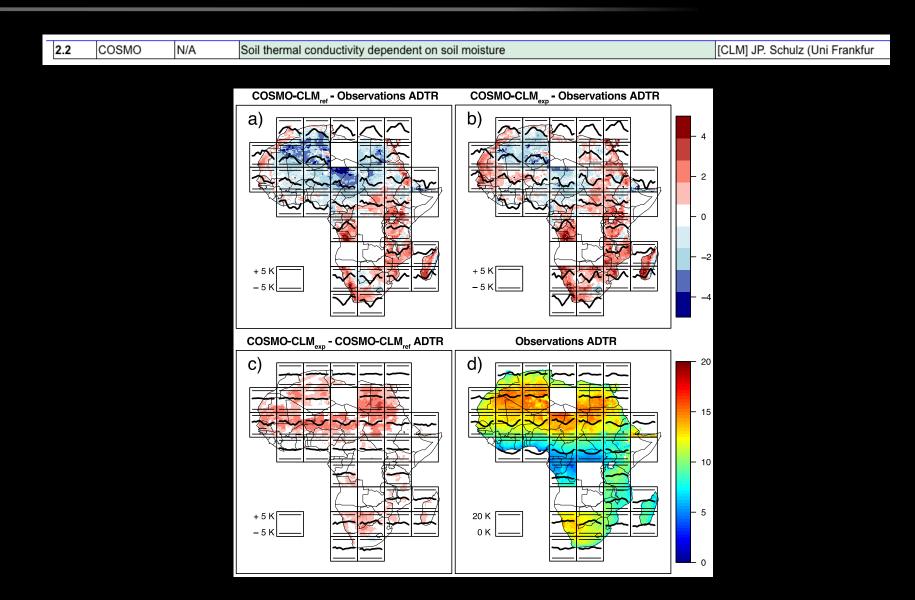
Name	Mainly relates to	Target version	Task subject			Responsible person	Task status	Started	Expected delivery	Seconda associat	
2	Model dev	del development (CLM-Community, TERRA)									
2.1	COSMO	N/A	Vertically	/ dependent soil s	tructure, HWSD data set	[CLM] B. Ahrens (Uni Frankfurt	work	N/A	2012-12-31	N/A notes	status
2.2	COSMO	N/A	Soil therr	mal conductivity d	ependent on soil moisture	[CLM] JP. Schulz (Uni Frankfur	test	N/A	N/A	N/A	
2.3	co 2	Mod	el develo	pment (CLM	-Community, TERRA)		-	-	1	otes	status
2.4	со	_									
2.5	co 2.1	COS	SMO	N/A	Vertically dependent soil structure, HWSD data se	et	[Cl	.M] B. Ahrens	(Uni Frankfur	rt otes	status
2.6	co 2.2	cos	MO	N/A	Soil thermal conductivity dependent on soil moiste	ure	[CL	.M] JP. Schulz	z (Uni Frankfur		
2.7	co 2.3	cos	MO	N/A	Carbon cycle		[CL	.M] B. Ahrens	(Uni Frankfur	otes rt otes	
2.8	со						-	-		otes	status
	2.4	COS	MO	N/A	Dynamic vegetation		[CL	.M] B. Ahrens	(Uni Frankfur	t otes	status
	2.5	COS	MO	N/A	Urban scheme BEP		[CL	_M] S. Schube	rt (PIK)		
	2.6	COS	MO	N/A	Urban scheme TEB		[CL	_M] K. Trusilov	/a (DWD)		
	2.7	cos	MO	N/A	Parameterization of urban effects		[CL	.M] H. Wouter	rs (KU Leuven)	
	2.8	COS	MO	N/A	River routing model		[CL	_M] J. Volkholz	z (PIK)		

2.1 COSMO N/A Vertically dependent soil structure, HWSD data set [CLM] B. Ahrens (Uni Frankfurt					
	2.1	COSMO	N/A	Vertically dependent soil structure, HWSD data set	[CLM] B. Ahrens (Uni Frankfurt

- Adaption of water budget equation to inhomogeneous soil texture
- Implementation of inhomogeneous soil textures from Harmonized World Soil Database
- Some tests were made, but substantial evaluation is still missing
- Main work by Frank Kalinka (GU Frankfurt)
- Frank left the group

 \Rightarrow Project 2.1 stopped

N/A

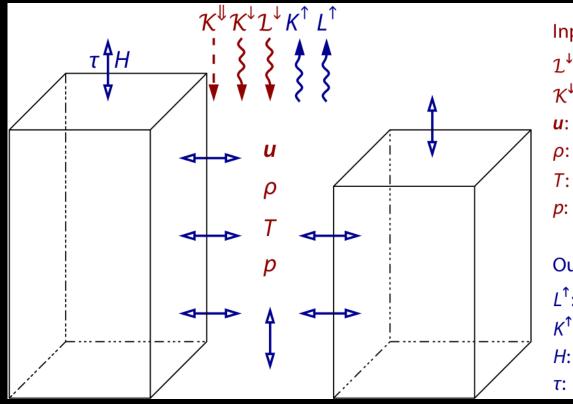

2.2 COSMO

Soil thermal conductivity dependent on soil moisture

[CLM] JP. Schulz (Uni Frankfur

- Introduction of dependence of soil thermal conductivity on soil water content (currently a constant conductivity representing a medium soil wetness is assumed)
- As a consequence the ground heat flux is reduced in dry regions, and enhanced in wet regions
- Work done by Jan-Peter Schulz (GU Frankfurt)
- Will be implemented in COSMO 5.0
- Tests for COSMO-EU, COSMO-DE, and COSMO-CLM in Africa

 \Rightarrow Project 2.2 ongoing; successful implementation expected


- Soil carbon cycle
- Work done by Jana Schröder (GU Frankfurt)
- First version implemented in offline TERRA
- Some tests were made, but no evaluation
- Jana left the group for maternity leave
 - \Rightarrow Project 2.3 stopped

2.4	COSMO	N/A	Dynamic vegetation	[CLM] B. Ahrens (Uni Frankfurt	

- Currently, nobody is working on this topic
- It is intended that Jan-Peter Schulz (GU Frankfurt) will work on this topic in the near future
 - \Rightarrow Project 2.4 in planning phase

	2.5	COSMO	N/A	Urban scheme BEP	[CLM] S. Schubert (PIK)
-					

- Urban parametrization scheme DCEP (Schubert et al. 2012, PIK)
- Multi-layer street canyon model:

Input of DCEP:

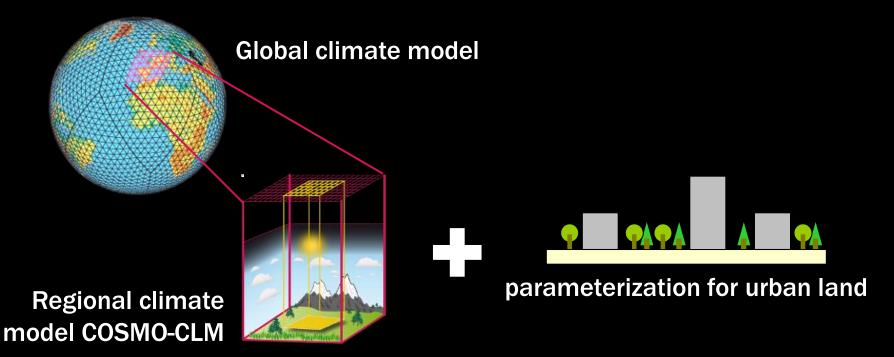
- \mathcal{L}^{\downarrow} : longwave rad. (down)
- $\mathcal{K}^{\downarrow,\downarrow}$: shortwave rad. (down)
 - : wind velocity
 - o: air density
- T: air temperature
- p: air pressure

Output of DCEP:

- L^{\uparrow} : longwave rad. (up)
- K^{\uparrow} : shortwave rad. (up)
- H: sensible heat flux
- τ : momentum flux

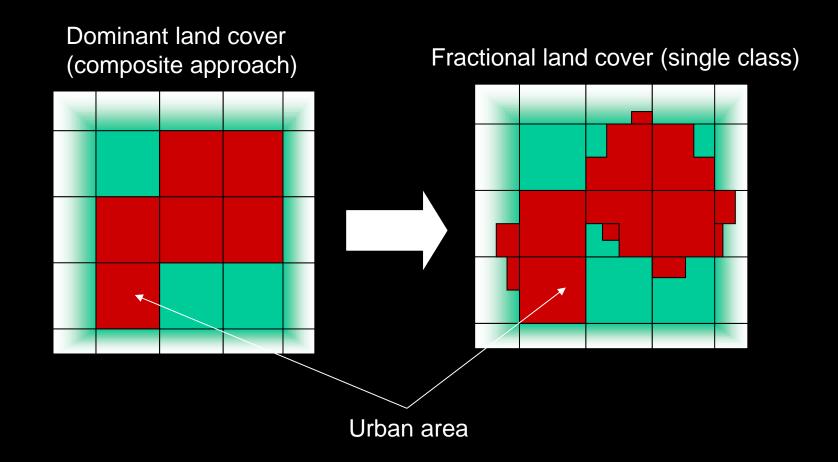
2.5 COSMO N/A	Urban sch
---------------	-----------

Irban scheme BEP

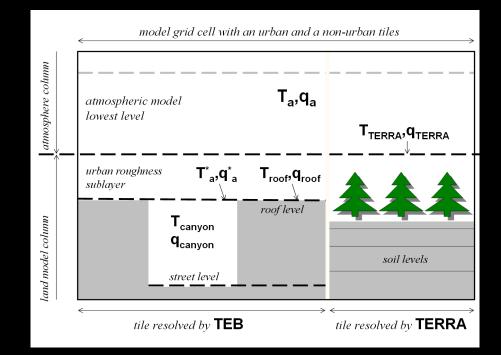

[CLM] S. Schubert (PIK)

- DCEP successfully evaluated with flux measurements (poster, submitted paper)
- Applied to analyse urban heat island mitigation measures (Paper in Meteorologische Zeitschrift)
- Code will be made available
- Currently, precipitation effects being implemented into DCEP

 \Rightarrow Project 2.5 in testing phase



- New model for downscaling global climate projections to cityscale
- Work done by Kristina Trusilova (DWD)



• Implementation of tile-approach for fractional land cover

- Implementation into standard version due to too high computational costs not intended
 - \Rightarrow Project 2.6 stopped

- Urban parameterization in TERRA-ML, including an impervious water storage
- Work done by Hendrik Wouters (KU Leuven)
- 'Offline' evaluations were performed for urban sites of Marseille, Toulouse and Basel
- COSMO-CLM/TERRA 'Online' evaluation for Flanders, Belgium

Outlook

- Urban land-use scenarios for Belgium
- Urban Air quality modelling
- It is intended to implement it into standard TERRA-ML, but this still needs extra efforts in close cooperation with the main developers of TERRA-ML

 \Rightarrow Project 2.7 ongoing

- Implementation of wetlands
- Work done by Jan Volkholz (PIK)
- Currently project suspended, but tests in South American region are planned

 \Rightarrow Project 2.8 stopped

2.9 SOIL TEMPERATURE: LOWER BOUNDARY CONDITION

Modelling of T_SO in COSMO(-CLM)

- Prognostic variable: determines GH flux
- \rightarrow strong influence on near surface temperatures
- Solution of the discretized 1D heat conduction equation
- Upper Boundary: Flux exchange with atmosphere (SH, LH, radiation)

$$c_v \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right)$$

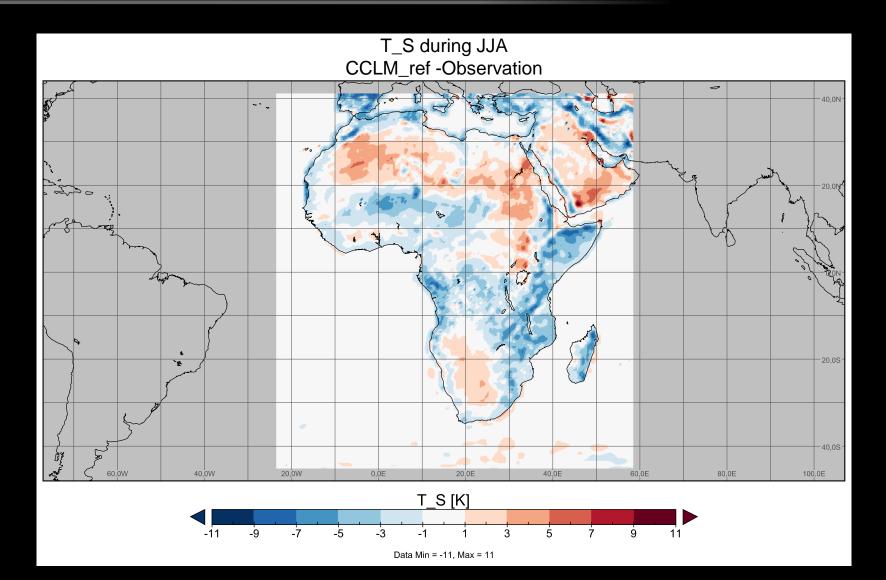
Lower BC in CCLM: "Fixed Temperature" at Bottom

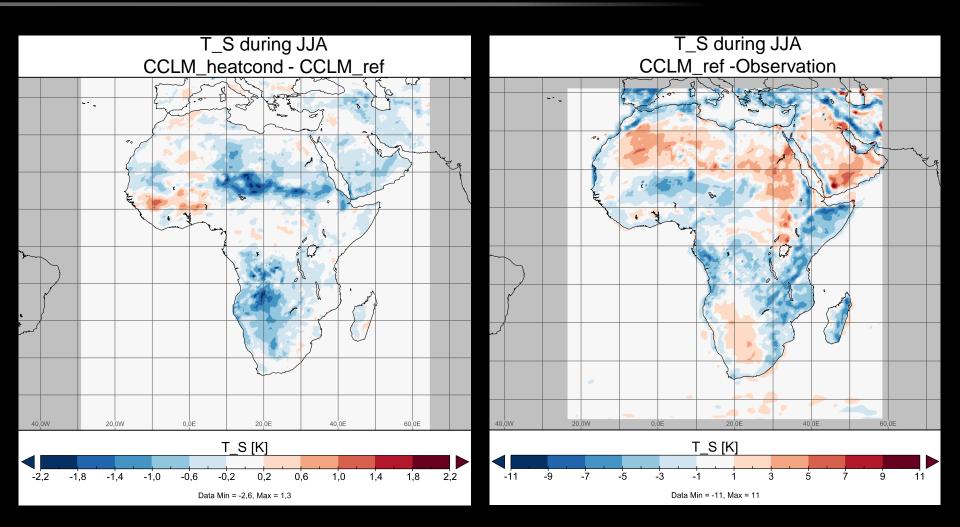
- Standard: 30yr mean of T2M from CRU (in EXTPAR)
- Only valid on this scale if model has same T2M mean
- Otherwise represents artificial source or sink of energy
- Particularly questionable for short & medium range climate

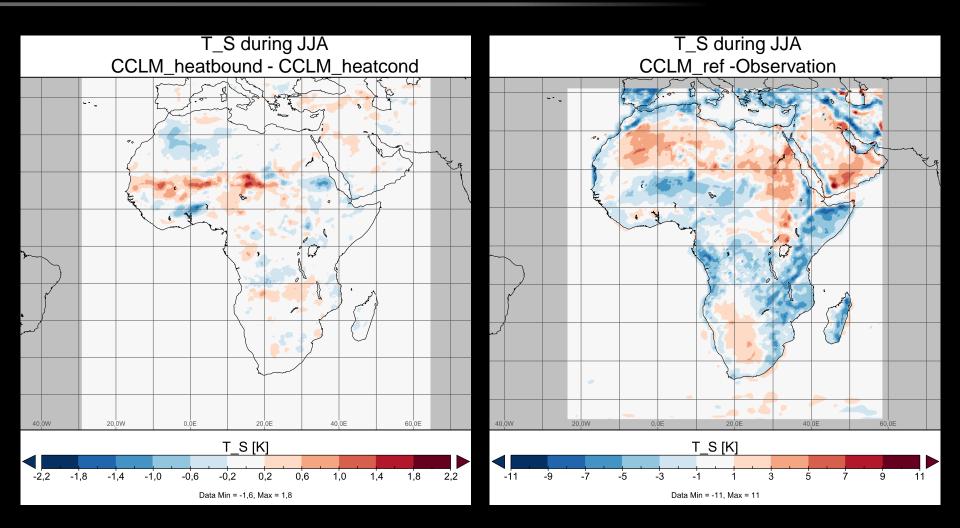
$$T(z_{max},t) = \overline{T_{2m}^{CRU}}$$

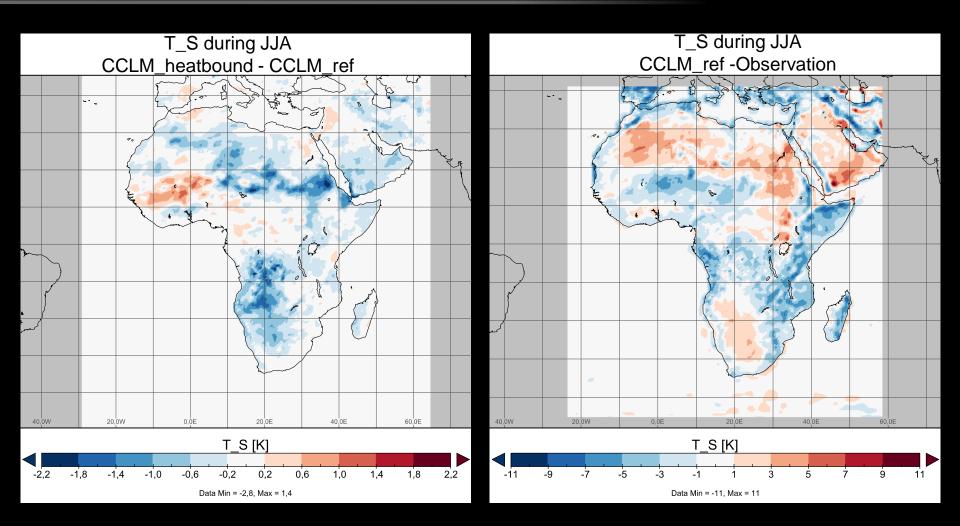
2.9 SOIL TEMPERATURE: LOWER BOUNDARY CONDITION

Update: "No Heat Flux" at Bottom

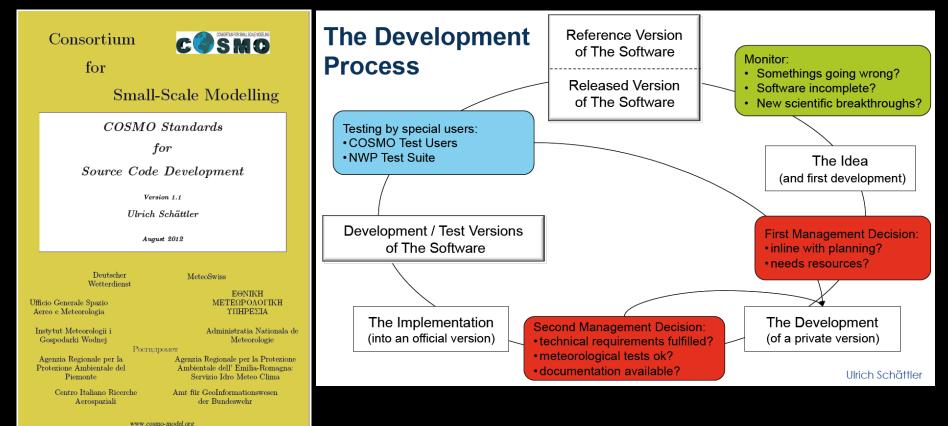

- No energy gain/loss in deep soil
- Deep soil is able to adjust to atmospheric forcing
- \rightarrow Soil temperature profile gets more adequate


$$-\lambda \frac{\partial T}{\partial z}\bigg|_{z_{max}} = 0$$




- Work done by Julian Tödter (GU Frankfurt)
- First tests are done
- Documentation is available

 \Rightarrow Project 2.9 ongoing; successful implementation expected


TERRA-ML OFFLINE

- Netcdf input for external parameters, forcing, and initial fields
- Netcdf output
- Bug fixes, which have to be documented
- New type of lower boundary condition for thermal part of TERRA-ML [J. Tödter, 2.9]
- Implementation of data assimilation scheme for TERRA-ML

SOURCE CODE DEVELOPMENT

Editor: Ulrich Schättler

 Basis for successful implementation of new developments should be the official "COSMO standard for source code development"

Questions concerning implementation procedure? Are there new TERRA developments?

Please contact: kothe@iau.uni-frankfurt.de