
PP POMPA (WG6)

News and Highlights

COSMO GM13, Sibiu

Oliver Fuhrer (MeteoSwiss) and the whole POMPA project team

Task Overview

Task 1 Performance analysis and documentation

Task 2 Redesign memory layout and data structures

Task 3 Improve current parallelization

Task 4 Parallel I/O

Task 5 Redesign implementation of dynamical core

Task 6 Explore GPU acceleration

Task 7 Implementation documentation

Task 8 Single precision

Task Overview

Task 1 Performance analysis and documentation

Task 2 Redesign memory layout and data structures

Task 3 Improve current parallelization

Task 4 Parallel I/O

Task 5 Redesign implementation of dynamical core

Task 6 Explore GPU acceleration

Task 7 Implementation documentation

Task 8 Single precision

Fundamental question

How to write a model code which…

•  allows productive development by domain scientists

•  runs efficiently on different HPC architectures

•  continues to do so in the future

•  Clear trend in HPC architectures to become heterogeneous
(GPUs, MIC, …)

•  Programming models are not getting simpler (OpenMP,
OpenACC, OpenCL, CUDA, …)

•  Accelerators are a got fit for COSMO

Using a domain-specifc library is one way to

solve this problem!

STELLA Library (DSL)

•  Separate user code (algorithm) from hardware specific
implementation (optimization)

•  Example given in report

Fortran

This is a fundamental change for COSMO code with distinct pros / cons

STELLA usage

•  Remove explicit data structure (i,j,k)
•  Remove explicit loops and loop order
•  Remove directives (e.g. NEC, OpenMP, …)

STELLA usage

Dynamical core based on STELLA

•  Fully functional RK dynamical core (all features for
COSMO-7 and COSMO-2, and some extras…)

•  Easy switch from CPU to GPU
•  CPU = (k,j,i), OpenMP

•  GPU = (i,j,k), CUDA, software managed caching

•  CPU (Fortran)  CPU (STELLA) = ~1.6 x
•  CPU (STELLA)  GPU (STELLA) = ~3.3 x

* CPU = Intel Xeon 2670 GPU = NVIDIA K20x

Recent Developments

•  Functionality and performance improvements in
STELLA (no bug since > 1 year)

•  Support now by Ben Cumming (CSCS)
•  Additional dycore features

•  Relaxation (Carlos)
•  Saturation Adjustments (Carlos)
•  Strang splitting for tracer advection (Tobias)
•  Moisture divergence (Xavier)

•  Missing features

•  Only RK-core considered
•  new FW-solver
•  Several options (PD-advection, advection order, …)
•  …

Documentation & Publications

•  Documentation
•  Stencil library (implementation)
•  Communication framework (user guide + implementation)
•  Wrapper (user guide + implementation)
•  Serialization framework (user guide)
•  Style-guide

•  Stencil library workshop material (“users guide”)

•  See http://hpcforge.org/

•  Publications
•  Gysi et al. 2013 (in preparation)

Next Steps…

•  Dynamical core
•  Implement important missing parts

•  STELLA library
•  Continuous development

•  Usability
•  Performance

•  Next generation
•  Generalization
•  Block-structured / unstructured grids

•  Integrate into official version

Task Overview

Task 1 Performance analysis and documentation

Task 2 Redesign memory layout and data structures

Task 3 Improve current parallelization

Task 4 Parallel I/O

Task 5 Redesign implementation of dynamical core

Task 6 Explore GPU acceleration

Task 7 Implementation documentation

Task 8 Single precision

Setup

Cleanup

Implementation

Input
Physics

Dynamics

Relaxation

Assimilation
Halo-update
Diagnostics

Output

Δt

Interface

Interface

STELLA

Setup

Cleanup

Implementation

Input
Physics

Dynamics

Relaxation

Assimilation
Halo-update
Diagnostics

Output

Δt

Interface

Interface

Compiler directives (OpenACC)

Compiler directives (OpenACC)

STELLA

Copy to GPU

Copy from GPU

Current status of Physics

Scheme Status
microphysics
 - hydci_pp (ice scheme)
 - hydci_pp_gr (graupel)

done
ready

sub grid scale oro. (sso) done

radiation done

turbulence done

soil model
 - terra_multlay
 - terra1
 - terra2
 - seaice
 - flake_interface

done
-
-
-
-

convection
 - conv_tiedtke
 - organize_conv_kainfri
 - conv_shallow

work in progress

done

Work by X. Lapillonne, D. Leutwyler, C. Padrin , A. Roches, S. Schaffner

Current status of Physics

Scheme Status
microphysics
 - hydci_pp (ice scheme)
 - hydci_pp_gr (graupel)

done
ready

sub grid scale oro. (sso) done

radiation done

turbulence done

soil model
 - terra_multlay
 - terra1
 - terra2
 - seaice
 - flake_interface

done
-
-
-
-

convection
 - conv_tiedtke
 - organize_conv_kainfri
 - conv_shallow

work in progress

done

new

Work by X. Lapillonne, D. Leutwyler, C. Padrin , A. Roches, S. Schaffner

It works!
•  COSMO (v4.19) running on GPU-hardware
•  Regular runs

(00 UTC and 12 UTC of COSMO-7 and COSMO-2)
•  Full operational chain

(plots are delivered into visualization software)
•  Almost full featured, but certainly physically reasonable

Overall speedup?

•  Depends on use-case and on hardware compared

•  Benchmark without assimilation and I/O

•  Using latest CPU (Intel Xeon 2670) and latest
GPU (NVIDIA K20x)

•  CPU (Fortran)  CPU (STELLA) = ~1.3 x
•  CPU (STELLA)  GPU (STELLA) = ~3 x

•  Larger factor for power savings

Task Overview

Task 1 Performance analysis and documentation

Task 2 Redesign memory layout and data structures

Task 3 Improve current parallelization

Task 4 Parallel I/O

Task 5 Redesign implementation of dynamical core

Task 6 Explore GPU acceleration

Task 7 Implementation documentation

Task 8 Single precision

Motivation & Goal

•  Do we really need 15 digits?

•  The advantages of single precision computing:

• real(kind=8) :: a ! I am 8 Bytes
• real(kind=4) :: b ! I am 4 Bytes

•  Move less information
•  Keep more numbers in cache
•  Lower precision arithmetic is faster

•  Goal: one single place in code to define working precision

Upper air verification (+60h, summer)

SYNOP Verification (FF10M, summer)
B

ia
s

(m
/s

)

S
td

e
(m

/s
)

Time-series TD2M & T2M
TD

2M

T 2
M

Summary & conclusions

•  COSMO version 4.26 with support for user-defined
working precision ready for re-integration

•  single-precision mode for test purposes

•  new code shows same skill with double precision as
original code

•  marginal degradation in skill found with single precision
during a limited period, will be investigated

•  reduction of elapsed time to 60% with single precision for
COSMO-2 setup!

Summary

•  There is a version of COSMO which runs on GPUs!

•  Getting access to and large allocations on hybrid
supercomputers for research projects is easy for early
adopters!

•  Get involved!

Goal for next COSMO year

4.19

Goal for next COSMO year

4.19

4.19
POMPA

Goal for next COSMO year

4.19

4.29

4.19
POMPA

Merge POMPA developments back to trunk until December 2014

Thank you!

…and thanks to the POMPA project team for their work in 2013!

Andre Walser

Andrea Arteaga

Anne Roches

Benjamin Cumming

Carlos Osuna

Cristiano Padrin

Daniel Leuenberger

David Leutwyler

Davide Cesari

Florian Dörfler

Jason Temple

Jean-Guillaume Piccinali

Jeremie Despraz

Joseph Charles

Katharina Riedinger

Kevin Wallimann

Matthew Cordery

Mauro Bianco

Men Muheim

Michael Baldauf

Neil Stringfellow

Nicolo Lardelli

Pablo Fernandez

Peter Messmer

Roberto Ansaloni

Sadaf Alam

Sander Schaffner

Stefan Rüdisühli

Stefano Zampini

Thomas Schulthess

Thomas Schönemeyer

Tim Schröder

Tiziano Diamanti

Tobias Gysi

Ugo Varetto

Ulrich Schättler

William Sawyer

Xavier Lapillonne

/dev/null

Benchmarks

•  CPU performance was measured on a single socket of Piz
Daint
•  Sandy Bridge E5-2670 @ 2.60GHz
•  With hyperthreading

•  GPU performance was measured on my Windows PC
•  Tesla K20c (roughly 10-20% slower than a K20x)
•  ECC on
•  CUDA 5.5

•  Single node measurements on a 128 x 128 data set

Benchmark – CPU vs. GPU

2.1
2.8

1.8
5.1

4.7
5.5

2.0
7.2

5.9
1.5

4.2
2.6

4.1
2.6

4.4
2.6

3.1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

VerticalDiffusionTracers2
VerticalDiffusionUVW

VerticalAdvectionPPTP
VerticalDiffusionT

HorizontalAdvectionPPTP
HorizontalAdvectionUV
VerticalAdvectionUVW
SaturationAdjustment

HorizontalAdvectionWWC
FastWavesDivergence

AdvectionPDX
HorizontalDiffusionTracers

AdvectionPDY
FastWavesUV
AdvectionPDZ

FastWavesWPPTP
Total Dycore

Speedup CPU vs. GPU

A tesla K20c shows a 3.1x speedup
over a Sandy Bridge socket

Approach(es) in POMPA

•  How to achieve portable performance while retaining a
single source code?

Dynamics
•  ~60% of runtime
•  few core developers
•  many stencils
•  very memory intense

Physics + Assimilation
•  ~20% of runtime
•  more developers
•  plug-in / shared code
•  “easy” to parallelize

Stencil library
(STELLA)

Compiler directives
(OpenACC)

