

Cleaning up boundary conditions in COSMO

Carlos Osuna (C2SM), Oliver Fuhrer (MeteoSwiss)

Boundary conditions code in cosmo updates the boundaries of the global domain.

0. Computation (Stencil)

Halo exchanges & **Boundary Conditions**

Halo exchanges & **Boundary Conditions**

3. Computation (Stencil)

Halo exchanges & Boundary Conditions

0. Computation (Stencil)

Boundary Condition Computation (Stencil)

- : :
 - :

Halo exchanges & Boundary Conditions

0. Computation (Stencil)

- **1. Halo-Update**
- **2. Boundary Condition**
- 3. Computation (Stencil)

Typical example of boundary condition interpolating values from boundary fields at nnew:

```
IF( my_cart_neigh(3) = -1) THEN

DO k=1, ke

DO j=1, je

DO i=iend+1, ie

u (i,j,k,nnew) = z1 * u_bd (i,j,k,nbd1) + z2 * u_bd (i,j,k,nbd2)

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO
```

BC in cosmo code is not standarized.

Typical example of boundary condition interpolating values from boundary fields at nnew:

```
IF(my_cart_neigh(3) = -1) THEN

DO k=1, ke

DO j=1, je

DO i=iend+1, ie

u (i,j,k,nnew) = z1 * u_bd (i,j,k,nbd1) + z2 * u_bd (i,j,k,nbd2)

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO
```

- BC in cosmo code is not standarized.
- BC are hardcoded in every boundary update \rightarrow code redundancy.

Typical example of boundary condition interpolating values from boundary fields at nnew:

```
IF(my_cart_neigh(3) = -1) THEN

DO k=1, ke

DO j=1, je

DO i=iend+1, ie

u (i,j,k,nnew) = z1 * u_bd (i,j,k,nbd1) + z2 * u_bd (i,j,k,nbd2)

ENDDO

ENDDO

ENDDO

ENDDO

ENDIF
```

- BC in cosmo code is not standarized.
- BC are hardcoded in every boundary update \rightarrow code redundancy.
- Not always placed were expected (after exchange, before stencil that uses the field).

Risk: if some stencil modifies boundaries between initialize_loop & hori_diffusion.

Introduction Typical example of boundary condition interpolating values from boundary fields at nnew: IF(my_cart_neigh(3) = -1) THEN DO k=1, ke DO j=1, je DO i=iend+1, ie u (i,j,k,nnew) = z1 * u_bd (i,j,k,nbd1) + z2 * u_bd (i,j,k,nbd2) ENDDO ENDDO ENDDO ENDDO

- BC in cosmo code is not standarized.
- BC are hardcoded in every boundary update \rightarrow code redundancy.
- Not always placed were expected (after exchange, before stencil that uses the field).
- Different strategies are applied in different boundary updates.

Different strategies are applied in different boundary updates.

Example in tracers (qi, qr, qs, qg):

If Ilb_qi = FALSE boundary conditions for qi are set to 0-value,

except for advection_pd, which uses zero_gradient

- BC in cosmo code is not standarized.
- BC are hardcoded in every boundary update \rightarrow code redundancy.
- Not always placed were expected (after exchange, before stencil that uses the field).
- Different strategies are applied in different boundary updates.
- Sometimes BC code mixed with other code not related with BC.
 Example: initialize_loop → mixing BC & initialization of fields.

Goals and Motivation for new BC implementation

- Standarize the boundary conditions code in COSMO.
- Avoid code duplication (reuse code, less errors, easy validation).
- Handle all types of boundary conditions in similar way.
- Better control of coupling of boundary conditions with halo exchanges.
- Reorganize BC & halo updates. Remove dependencies between code that applies BC and Stencil that uses boundary data.
- Clean code and easy to understand when applying boundary conditions.

• Interpolate boundary fields.

 $u(i,j,k,nnew) = z1 * u_bd(i,j,k,nbd1) + z2 * u_bd(i,j,k,nbd2)$

- Interpolate boundary fields.
- Zero gradient

- Interpolate boundary fields.
- Zero gradient
- Copy value

1 1 1

1 1 1

- Interpolate boundary fields.
- Zero gradient
- Copy value

Mirror	West boundary	North Boundary
	u(nboundlines,:,:) = -u(istart,:,:) v(nboundlines,:,:) = v(istart,:,:)	u(:,nboundlines,:) = u(:,jstart,:) v(:,nboudlines,:) = -v(:,jstart,:)

- Interpolate boundary fields.
- Zero gradient
- Copy value
- Mirror

• Constant boundary condition It does nothing!!!

Coupling to Halo Exchanges

In some BC types , like zero gradient, data update of corners of boundaries should come from neighbours.

If halos of a PE are not updated, this boundary condition will apply incorrect values at the corners.

Coupling to Halo Exchanges

always provides consistent data at the boundary for all the boundary condition types.

1st Step: Halo Exchange

2nd Step: Boundary Condition

New BC Implementation API Set coordinates of lbc_masspoint lbc_upoint lbc_vpoint boundaries lbc compute tendency Check consistency of arguments. Precomputes boundary regions to be computed. lbc_backend Calls specific BC implementations. Actual implementation of lbc_zerogradient **lbc_interpol** lbc_copyvalue **BC** algorithm

API example:

SUBROUTINE lbc_upoint_3d(lbc_type, field, field_type, nlines, doEW, doNS, & doCorners, value, src, bd1, bd2, nincbound, nlastbound, tend, dt, mask)

lbc_type: specify BC type to be applied (zerogradient, interpolation, etc.)

field_type: whether scalar, horizontal component of vector, vertical component of vector. (some algorithms like Mirror may depend on it)

nlines: number of lines for region where to apply BC.

doEW, doNS: whether apply to EastWest (NorthSouth) boundaries or not.

doCorners: whether apply BC to corners.

mask: field with logicals used as a mask to BC algorithm.

BC patterns allowed

Implemented all possible patterns for BC observed in COSMO.

doEW, doNS, doCorners (eg. initialize_loop)

doEW, No NS, doCorners

doEW, No NS, No Corners (fast_waves)

doEW, doNS, No Corners

Compute Boundary from BD fields or tendencies

We provide two working modes for doing Interpolation of boundaries.

Using two boundary fields (u_bd)

Using boundary tendency

- u_bd_ten = (u_bd (:,:,:,nbd2) - u_bd (:,:,:,nbd1)) / nincbound

Compute Boundary from BD fields or tendencies

We provide two working modes for doing Interpolation of boundaries.

Using two boundary fields (u_bd)

CALL lbc_upoint(BCType_Tendency, u(:,:,:,nnew), field_type=BCFieldType_VectorI, & nlines=1, bd1=u_bd(:,:,:,nbd1), bd2=u_bd(:,:,:,nbd2), doEW=.TRUE., doNS=.FALSE.)

Using boundary tendency

CALL lbc_compute_tendency(u_bd_tend, u(:,:,:,nnew), u(:,:,:,nnow), dt, & istartu, iendu, jstartu, jendu, nlines=1, doEW=.TRUE., doNS=.FALSE.)

CALL lbc_upoint(BCType_Tendency, u(:,:,:,nnew), field_type=BCFieldType_VectorI, & nlines=1, tend=u_bd_tend, dt=dts, doEW=.TRUE., doNS=.FALSE.)

Status

- ✓ Implemented subroutines for new boundary conditions in a src_lbc module.
- Replaced and tested at 3 places in COSMO: fast_waves_rk, advection_pd, initialize_loop
- Full set of testing functions, testing basic functionality of new BC deployed within src_lbc
- $oldsymbol{x}$ Systematically replace all the remaining bc related code in COSMO

NOT DONE

DONE

Summary

- Proposal to clean up the boundary conditions code.
 Implementated API and full set of boundary condition types.
- ✔ Replaced (and validated) 3 BC blocks in COSMO
- ✓ Testing functions shipped with the module src_lbc.f90
- ✓ Next step: replace all BC code in COSMO with new subroutines.

We are glad to receive feedback, ideas?