Technical Test Suite for
COSMO

X. Lapillonne, N. Lardelli, O. Fuhrer

Schweizerische Eidgenossenschaft
m Confédération suisse
Confederazione Svizzera

Eidgendssische Technische Hochschule Ziirich X .
Confederaziun svizra

Swiss Federal Institute of Technology Zurich
Eidgendssisches Departement des Innern EDI
Bundesamt fur Meteorologie und Klimatologie MeteoSc hweiz

Purpose of the technical Test Suite

* Light and easy to use python tool (testsuite.py) to check a newly
developed COSMO model version:

* The code is running and gives “correct” results with various
configurations (e.g. only dynamics, dynamics + physics, members
configurations ...)

* The code gives bit identical results with different processor
configurations (including with or without I/O PE)

« Restart functionality is working, and gives bit identical results
« Additional user defined verification could be specified

* Design to help addressing chapter 6.5 of COSMO standard: Standard
Test Suite

10 September 2012 Xavier Lapillonne

Verifying Cosmo results

o ASCII output file (YUPRTEST) : double precision mean, max and min
values at each vertical level of the prognostic fields

» Correct results: account for rounding error (i.e. which could arise from
optimizations or use of a different compiler)

e Simulations time should be kept short (<1h)

New cosmo executable]

N

Ref. P - P « YUPRTEST
YUPRTEST >| YUPRTEST |€ - Paral 2
Differences Bit identical
within
tolerance
Reference output file. Run with different
May have been parallelisation

computed on a
different system

10 September 2012 Xavier Lapillonne

Setting the tolerance factor

How to account for rounding error propagation ?

Methodology:
2 perturbed cosmo executables compiled with different compilers

*At each step a perturbation is added to the prognostic fields:
f=f* (1+R*0) , with R random array and [] = 1-15

*Run 30 experiments, compute maximal differences for each prognostic variables

Relative error

Maximal error per variable

Y Cosmo 7 run

—=— Max all

T2

T3

T,3

——T

[=]
h

T 1

p

Relative error

o

e

t

f”\’\{

/

"

=

A L 1 1 1 1 1 1 L L
0 S00 1nan 1300 2000 2300 3000 3500 o 500 1000

time [s]

Reduce tolerance number parameters : two groups of variables, T and All prognostics

Set threshold for this 2 groups, for different time intervals

1560 ZDED
time [s]

1 1
2500 3000

Threshold can be set differently for different cases (e.g. cosmo2 or cosmo7)

1
3500

10 September 2012 Xavier Lapillonne

@;‘ Running testsuite.py

» The different tests are defined in an input file “testlist.xml”

» The script ./testsuite.py can be called with several command line
arguments. (full description: ./testsuite.py —h)

“testzuite,py -n 16 ——color - —-exe=cosmo_gnu —-steps=10 ——mpicmd="aprun -n' -v 0

o FATEST 1. Only Dunamics
*¥¥¥ cosmofSTEST _ 1 3

- Dynamics + Physics

Test is passed for OK or

MATCH results

Other possible outcome are
FAIL or CRASH

10 September 2012 Xavier Lapillonne

1ite .

te.py [options

cript run a series

: =criph,

picmd,
ion of the standardoutput iz required,
file

10 September 2012 Xavier Lapillonne 6

@‘ The checkers

e For each test a set of checkers can be called

» Checker : script (could be written in any language) that return one of
the following exit code:
0: MATCH, 10: OK, 20 : FAIL, 30 : CRASH

» Final test result is given by the max of individual checker results

» The script can access run time environment variables (TS _BASEDIR,
TS NAMELISTDIR, TS_VERBOSE ...) set by testsuite.py

 The idea is that each user can add his own custom checkers (ex:
checking that a specific output file exists)

10 September 2012 Xavier Lapillonne

¢
et

.. The testsuite directory

For each test a separate
testsuite.py : main script working directory is
created ex:
Work/cosmo7/TEST_1

testlist.xml : contains
tests definition

contains checker scripts
e.g. tolerance_check.py

: binary input

directory where tests will
be run

INPUT_* : base input
files

Main test folder

contains all required tools

and the ts_test class
= tolerance.txt

file with tolerance
coefficents

e.g. : cosmo2

referencel INPUT_ and
YU*

e.g. : cosmo7/

reference2 INPUT_ and
YU*

10 September 2012 Xavier Lapillonne

Test definition

The tests are defined in an xml file: testlist.xml

<test name="TEST_3" type=“cosmo7/">

</test>

<|

<test name=“TEST_3p” type="“cosmo7”’>

<[test>

<description> Dynamics + Physics + Observations </description>
<namelistdir>cosmo7/TEST_3/</namelistdir> }
<refoutdir>cosmo7/TEST_3/</refoutdir> D
<checker>run_success_check</checker>
<checker>tolerance_check</checker > }
<!-- set hstop to 2 to be able to check restart later -->

<changepar file="INPUT_ORG” name="hstop”> 2 </changepar>
<autoparallel>1</autoparallel> 6\0\

<description> Parallel Test </description>
<namelistdir>cosmo7/TEST_3/</namelistdir>
<refoutdir>../TEST_3/</refoutdir> <!-- previous TEST 3 run -->
<depend>../TEST_3</depend>
<checker>run_success_check</checker>
<checker>identical_check</checker >
<changepar file="INPUT_ORG” name="nstop
<autoparallel>2</autoparallel>

™S

Path to input and refrence
files

Checkers definition

changepar can be used to
modify the reference

namelist

Set automatic parallelization

/4]

For the parallel test, the
reference directory is the
previous run

Calling identical check

10 September 2012 Xavier Lapillonne

Status with respect to COSMO coding document:
6.5 Standard Test Suite

All versions have to pass a standard test suite, which checks some technical issues.
The idea is to define such a test suite, that can easily be run at every center. Issues
to be checked are for example:

 Portability (not in testsuite.py)
 Independence of processor configurations (MPIl and OpenMP) (ok)
* Reproducibility of results with older versions (ok)
» Restart functionality (ok)
* 1/0O with Grib/NetCDF (possible)

» Tests with array bound checking (not in testsuite.py, user responsibility)

 Possibility to run with input data from
different models (GME, IFS, ERA, etc.) (ok, needs reference input files)

» Timings / efficiency (possible, but difficult to get a portable solution)

10 September 2012 Xavier Lapillonne 10

Open gquestions

A set of tests covering the various options used by the different
COSMO members should be defined

In order to run a fast test, we are using reduced domain size (typically
80x60 grid point), is this ok for all tests/purposes ?

Do we need to have binary inputs for all grid resolutions (2km, 5km,
7km, ...) ?

Support for int2lm (currently not available) ?

Where should the reference binary inputs, namelists, and reference
YUPRTEST files should be stored (so that they can be shared among
COSMO members) ?

How will this be distributed ? With the code ? In a public repository? On
the COSMO webpage?

Who will do the maintenance, support and further development of this
code?

Shall we add a perturbed field option in COSMO (to set tolerance)

Is there some urgent additional checkers required ? who will implement
them ?

10 September 2012 Xavier Lapillonne 1

Further notes

* The testsuite was used on IBM (ECMWF), MacOSX, Cray, ECMWF, ...

e For NEC this would require to install python on the nodes (the testsuite
IS currently executed from the compute node)

* The testsuite.py was used by Burkhard Rockel for COSMO-CLM. He
ask for a NETCDF checker

Time line

« Consolidation of the current prototype (Until end of September)

 Test and review by WG6 chair (Ulrich Schaettler) and CLM community
(Burkhard Rockel) (Until end of November)

e 2nd Consolitation (Until end of December)
e First distribution to all COSMO

10 September 2012 Xavier Lapillonne 12

