
Technical Test Suite for
COSMO

X. Lapillonne, N. Lardelli, O. Fuhrer

Eidgenössisches Departement des Innern EDI
Bundesamt für Meteorologie und Klimatologie MeteoSc hweiz

2 10 September 2012 Xavier Lapillonne

Purpose of the technical Test Suite

• Light and easy to use python tool (testsuite.py) to check a newly
developed COSMO model version:

• The code is running and gives “correct” results with various
configurations (e.g. only dynamics, dynamics + physics, members
configurations …)

• The code gives bit identical results with different processor
configurations (including with or without I/O PE)

• Restart functionality is working, and gives bit identical results

• Additional user defined verification could be specified

• Design to help addressing chapter 6.5 of COSMO standard: Standard
Test Suite

3 10 September 2012 Xavier Lapillonne

Verifying Cosmo results
• ASCII output file (YUPRTEST) : double precision mean, max and min

values at each vertical level of the prognostic fields

• Correct results: account for rounding error (i.e. which could arise from
optimizations or use of a different compiler)

• Simulations time should be kept short (<1h)

Ref.
YUPRTEST

YUPRTEST YUPRTEST
Paral 2

New cosmo executable

Bit identical

Run with different
parallelisation

Differences
within
tolerance

Reference output file.
May have been
computed on a
different system

4 10 September 2012 Xavier Lapillonne

Setting the tolerance factor

Methodology:
•2 perturbed cosmo executables compiled with different compilers
•At each step a perturbation is added to the prognostic fields:
f = f * (1+R*ԑ) , with R random array and ԑ = 1-15

•Run 30 experiments, compute maximal differences for each prognostic variables

How to account for rounding error propagation ?

• Reduce tolerance number parameters : two groups of variables, T and All prognostics
• Set threshold for this 2 groups, for different time intervals
• Threshold can be set differently for different cases (e.g. cosmo2 or cosmo7)

Cosmo 7 run

Tt 1

Tt 2

Tt 3

Tt 1

Tt 2

Tt 3

5 10 September 2012 Xavier Lapillonne

Running testsuite.py

• The different tests are defined in an input file “testlist.xml”

• The script ./testsuite.py can be called with several command line
arguments. (full description: ./testsuite.py –h)

Test is passed for OK or
MATCH results
Other possible outcome are

FAIL or CRASH

6 10 September 2012 Xavier Lapillonne

testsuite.py command line arguments

7 10 September 2012 Xavier Lapillonne

The checkers

• For each test a set of checkers can be called

• Checker : script (could be written in any language) that return one of
the following exit code:
0 : MATCH, 10 : OK , 20 : FAIL, 30 : CRASH

• Final test result is given by the max of individual checker results

Higher verbosity displays
individual checker results

• The script can access run time environment variables (TS_BASEDIR,
TS_NAMELISTDIR, TS_VERBOSE …) set by testsuite.py

• The idea is that each user can add his own custom checkers (ex:
checking that a specific output file exists)

8 10 September 2012 Xavier Lapillonne

The testsuite directory

Main test folder

Checker/
contains checker scripts
e.g. tolerance_check.py

testlist.xml : contains
tests definition

testsuite.py : main script

Work/
directory where tests will

be run

Tools/
contains all required tools

and the ts_test class

typedirA/:

e.g. : cosmo2

input/ : binary input

INPUT_* : base input
files

tolerance.txt
file with tolerance

coefficents

Test_1/ :
reference1 INPUT_ and

YU*

Test_2/ :
reference2 INPUT_ and

YU*

...

typedirB/:

e.g. : cosmo7

...

For each test a separate
working directory is
created ex:
Work/cosmo7/TEST_1

9 10 September 2012 Xavier Lapillonne

Test definition

• The tests are defined in an xml file: testlist.xml

<test name=“TEST_3” type=“cosmo7”>
<description> Dynamics + Physics + Observations </description>
<namelistdir>cosmo7/TEST_3/</namelistdir>
<refoutdir>cosmo7/TEST_3/</refoutdir>
<checker>run_success_check</checker>
<checker>tolerance_check</checker >
<!-- set hstop to 2 to be able to check restart later -->
<changepar file=“INPUT_ORG” name=“hstop”> 2 </changepar>
<autoparallel>1</autoparallel>

</test>
<!-- --- -->

<test name=“TEST_3p” type=“cosmo7”>
<description> Parallel Test </description>
<namelistdir>cosmo7/TEST_3/</namelistdir>
<refoutdir>../TEST_3/</refoutdir> <!-- previous TEST_3 run -->
<depend>../TEST_3</depend>
<checker>run_success_check</checker>
<checker>identical_check</checker >
<changepar file=“INPUT_ORG” name=“nstop”> 20 </changepar>
<autoparallel>2</autoparallel>

</test>

Path to input and refrence
files

Checkers definition

For the parallel test, the
reference directory is the
previous run

changepar can be used to
modify the reference
namelist

Set automatic parallelization

Calling identical check

10 10 September 2012 Xavier Lapillonne

Status with respect to COSMO coding document:
6.5 Standard Test Suite

….
All versions have to pass a standard test suite, which checks some technical issues.
The idea is to define such a test suite, that can easily be run at every center. Issues
to be checked are for example:

• Portability (not in testsuite.py)

• Independence of processor configurations (MPI and OpenMP) (ok)

• Reproducibility of results with older versions (ok)

• Restart functionality (ok)
• I/O with Grib/NetCDF (possible)

• Tests with array bound checking (not in testsuite.py, user responsibility)

• Possibility to run with input data from
different models (GME, IFS, ERA, etc.) (ok, needs reference input files)

• Timings / efficiency (possible, but difficult to get a portable solution)

11 10 September 2012 Xavier Lapillonne

Open questions

• A set of tests covering the various options used by the different
COSMO members should be defined

• In order to run a fast test, we are using reduced domain size (typically
80x60 grid point), is this ok for all tests/purposes ?

• Do we need to have binary inputs for all grid resolutions (2km, 5km,
7km, …) ?

• Support for int2lm (currently not available) ?

• Where should the reference binary inputs, namelists, and reference
YUPRTEST files should be stored (so that they can be shared among
COSMO members) ?

• How will this be distributed ? With the code ? In a public repository? On
the COSMO webpage?

• Who will do the maintenance, support and further development of this
code?

• Shall we add a perturbed field option in COSMO (to set tolerance)

• Is there some urgent additional checkers required ? who will implement
them ?

12 10 September 2012 Xavier Lapillonne

Further notes

• The testsuite was used on IBM (ECMWF), MacOSX, Cray, ECMWF, …

• For NEC this would require to install python on the nodes (the testsuite
is currently executed from the compute node)

• The testsuite.py was used by Burkhard Rockel for COSMO-CLM. He
ask for a NETCDF checker

Time line

• Consolidation of the current prototype (Until end of September)

• Test and review by WG6 chair (Ulrich Schaettler) and CLM community
(Burkhard Rockel) (Until end of November)

• 2nd Consolitation (Until end of December)
• First distribution to all COSMO

