
Eidgenössisches Departement des Innern EDI
Bundesamt für Meteorologie und Klimatologie MeteoSc hweiz

Porting the COSMO nudging code to
GPU using directives

Daniel Leuenberger and Tiziano Diamanti, MeteoSwiss

COSMO General Meeting, Lugano, 10.9.2012

Motivation

Suppose you would be able to do your daily COSMO
simulations on a computer which
•is a factor of 7 cheaper
•uses only ¼ of the electrical power (and thus saves
maintenance costs)
in the same time to solution!

Next-generation Graphical Processing Units (GPU) based
architectures could make this dream come true

Need to make COSMO fit for Graphical Processing Unit (GPU)
architectures

Swiss HP2C Project
• COSMO code is memory bandwith limited (only 2% peak

performance on our CRAY XE6)
• GPU has much higher memory bandwith than CPU
• Adapt COSMO to run efficiently on mixed CPU-GPU

computers
• Rewrite of the dynamical core in C++ using a newly

developed stencil library
• Use compiler directives to port physical parametrizations

(does not change the fortran code)
• COSMO PP POMPA

• Bring current MeteoSwiss operational COSMO production to
a new CPU-GPU demonstrator hardware to achieve same
time to solution

• Need to consider also nudging data assimilation!

OPCODE Project

OPCODE Demonstrator

Cray XE6 (3 cabinets)

18cm

OPCODE Demonstrator

144 CPU
(1728 cores)

16 GPU and
2 CPU (16 cores)

Porting Strategy

• Use GPU for computing
intensive parts (dynamics,
physics)

• Use CPU for I/O and less
computing intensive parts

• Avoid CPU-GPU data transfer
whereever possible (expensive!), keep prognostic 3D fields on
GPU!

• Assimilation code is very large (ca 83’000 lines of code, ca
37% of whole COSMO model)
• Use directives to port code
• Only port code parts to GPU which involve prognostic 3D

fields

GPU
Prognostic 3D fields

CPU

data transfer

Example use of directives

!$acc data create(a,b,c)
!$acc update device(b,c)
!$acc parallel
do j=1,Ny

do i=1,Nx
a(i,j)=b(i,j)*c(i,j)

end do
end do
!$acc end parallel
!$acc update host(a)
!$acc end data

do j=1,Ny
do i=1,Nx

a(i,j)=b(i,j)*c(i,j)
end do

end do

Analysis of Nudging Code

Obs preprocessing

Time: 64ms

Comm.: 5.9 GB

3D Fields: pp

Obs-Model
Differences

Time: 1ms

Comm.: nothing

3D Fields: u,v,t,pp,qv

Spatial Checks,
communication, I/O

Time: 26ms

Comm.: 1.2GB

3D Fields: -

Analysis increments

Time: 753ms

Comm.: 12.5GB

3D Fields: u,v,t,pp,qv,qc

Weight functions

Time: 331ms

Comm.: nothing

3D Fields: -

1 2 3 4 5

Every hour Every nth timestep Every nth timestep Every nth timestep Every timestep

CPU CPUGPU? GPUGPU

Scaling of Nudging Code
Ratio of execution time 16 vs 600PE

Results for Phase 5

• Ported whole phase, including the subroutines
• geostroph_ps_corr, ps_temperatur_corr,

nudge_humid_mass and nudge_horiz_wind
• Verified results: same results up to machine accuracy
• Performance of GPU version compared to CPU (16cores)

version

• 2 times slower with our porting (DA phase 5 on GPU,
rest on CPU)

• 160 times slower without our porting (whole DA on CPU,
rest of the model on GPU, needs data transfer of prog.
fields)

• Goal achieved: avoided data transfers between CPU and
GPU

Further Remarks

• Started to implement a mixed CPU-GPU version of the
nudging code

• Expected speed-up of other model parts:
• Dynamics: factor 6
• Physics: factor 3

• DA is switched on only during ca 12% of our COSMO
simulations, so a slower DA performance on the GPU is not
critical

• Current results indicate that time to solution will be similar
on the GPU hardware and on our operational CRAY
hardware

Thanks for your attention

Lines vs. Runtime

• 250’000 lines of Fortran 90 code

% Code Lines % Run time

Assimilation mode:
16% run time
37% of code lines

Phases’ Analysis
Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

1) Total

time

554s 8.9s 231s 2860s 6506s

2) Number

of times the

phase is

executed

1 per hour, 3

times in hour

suite

Every 12th step

(540 / 12)

Every 12th

step

(540 / 12)

Every 12th

step

(540 / 12)

Every step

540

3) Total

time per

call

184.7s 0.2s 5.13s 65.5s 12s

4) Total

time per

call per cpu

11.5s 0.012s 0.321s 3.97s 0.753s

5) Time per

step per cpu

0.064s 0.001s 0.0268s 0.331s 0.753s

Meaning of the rows:

1)Total time is the time measured by Scalasca, adding all the procedures belonging to a certain phase.

2)Number of times the phase is executed: only phase 5 is executed every time step, the others are not

(we considered Cosmo 2)

3)Total time per call: 1) divided by 2)

4)3) divided by number of processes

5)1) divided by num. time steps (540 in this case) divided by number of processes

Porting effort
Phase 5

Function name Subfunctions Number of lines

nudge_humid_mass 1100

Satad 200

Get_gs_lheating 100

nudge_horiz_wind 1500

Phase 4

ps_spreading 500

mult_org_spread 700

upair_org_spread 600

surf_org_spread 500

Phase 2

local_sort_reports 1400

ps_local_info 750

upair_local_info 800

surf_local_info 800

mult_org_localinfo 1300

mult_vertic_intpol 2300

mult_obs_increment 900

Nudging: Possible subdivision
between CPU and GPU (2)

Phase 1

CPU

Phase 2

GPU

Phase 3

Phase 4

Phase 5

Transfers261 MB x 1 hour

14.8 MB x nth timestep

34.5 MB x nth timestep

30.5 MB x nth timestep

