Status Overview on PP KENDA
Km-scale ENsemble-based Data Assimilation

christoph.schraff@dwd.de
Deutscher Wetterdienst, D-63067 Offenbach, Germany

Contributions / input by:
Hendrik Reich, Andreas Rhodin, Roland Potthast, Uli Blahak, Klaus Stephan, Africa Perianez, Michael Bender (DWD)
Annika Schomburg (DWD / Eumetat)
Yuefei Zeng, Dorit Epperlein (KIT Karlsruhe)
Daniel Leuenberger (MeteoSwiss)
Mikhail Tsyrlunikov, Vadim Gorin, Igor Mamay (HMC)
Lucio Torrisi (CNMCA)
Amalia Iriza (NMA)

• Task 1: General issues in the convective scale (e.g. non-Gaussianity)
• Task 2: Technical implementation of an ensemble DA framework / LETKF
• Task 3: Tackling major scientific issues, tuning, comparison with nudging
• Task 4: Inclusion of additional observations in LETKF
SMC: LETKF: implementation

- modifications in COSMO in official code (V4_24)
 (e.g. in order to have a sub-hourly update frequency)

- **COSMO-DE LETKF implemented in NUMEX** and tested
 (e.g. stand-alone 2-day experiment reproduced)

- **GME-LETKF & ensemble INT2LM for DA cycle** implemented in NUMEX,
 being tested, should be available end of Sept.
 → in Oct., start first KENDA experiments in NUMEX over several days/weeks
 but: - direct interpolation from 60 km to 2.8 km!
 - deterministic analysis not yet implemented in NUMEX

- ensemble LBC 2013 – 2014:
 ensemble perturbations of interpolated ensemble GME fields,
 added to deterministic COSMO-DE LBC
LETKF: implementation / activities

- in past year, still only preliminary LETKF experiments possible, using Hendrik’s scripts:
 - up to 2 days (7 – 8 Aug. 2009: quiet + convective day)
 → 3-hourly (15-min) cycles
 - 32 ensemble members
 - perturbed LBC: COSMO-SREPS, 3 · 4 members

→ therefore

 - theoretical studies, toy model experiments related to adaptive localisation
 → talk by Hendrik Reich

 - benchmark, winter school on DA, support for HErZ centre, testing (e.g. NUMEX) …

 - only few COSMO-DE experiments related to adaptive localisation
• production of ‘full’ NetCDF feedback files
 – make clean interfaces to observation operators / QC in COSMO : done
 – … integrate them into 3DVAR package : in progress
 – and extend flow control (read correct (hourly) Grib files etc.) : to be done
 should be ready by end of 2012 (for VERSUS)

• ensemble-related diagnostic + verification tool, using feedback files:
 (Iriza, NMA)
 → computes statistical scores for different runs (‘experiments’),
 → focus: use exactly the same observation set in each experiment!
 → select obs according to namelist values (area, quality + status of obs, …)
 – problems with observation selection solved
 – implementing ensemble scores (reliability, ROC, Brier Skill Score, (continuous) Ranked Probability Score)
 – main part of documentation written
Task 3: scientific issues & refinement of LETKF

- lack of spread: (partly ?) due to model error and limited ensemble size which is not accounted for so far
to account for it: covariance inflation, what is needed?
 → additive (see later)
 → multiplicative \(X_b \rightarrow \rho \cdot X_b \)
 (by tuning, or) adaptive
 \[
 \langle (y - H(x_b))(y - H(x_b))^T \rangle = R + \rho HP_b H^T
 \]
 → pre-specified \(R \) is used for adaptive \(\rho \):
 → need for careful specification / tuning of obs errors

- observation error covariance \(R \):
 also estimate adaptively (Li, Kalnay, Miyoshi, QJRMS 2009)
 \[
 \langle (y - H(x_a))(y - H(x_b))^T \rangle = R
 \]
Task 3: scientific issues & refinement of LETKF

- adaptive observation errors

\[
\left\langle (y - H(x_a))(y - H(x_b))^T \right\rangle = R
\]

(in observation space)

- adaptive R in ensemble space:

 adjusts total weight, not relative weight of obs

- localisation
LETKF (km-scale COSMO): scientific issues / refinement

- adaptive estimation of obs error covariance \mathbf{R}
 (Li, Kalnay, Miyoshi, QJRMS 2009), but our implementation: in ensemble space!

within localisation scale

\[\text{f.g. mean} = 0.5 \, B_1 + 0.5 \, B_2 \]

\[\text{ana} \approx \text{f.g.mean} + (B_2 - B_1) \]
\[= 1.5 \, B_2 - 0.5 \, B_1 \]
(1 perfect obs)

2 obs \rightarrow least square fit

add obs, if already $N_{\text{obs}} > N_{\text{ens}}$:
- cannot be fitted well, improve analysis only slightly
- decrease analysis error!

\[P_w^a = \left[(k - 1) \, I + \left(Y^b \right)^T \, \mathbf{R}^{-1} \, Y^b \right]^{-1} \]

\rightarrow adaptive \mathbf{R} takes that into account and increases \mathbf{R}
however: large N_{obs}: adaptive increase of R indicates non-optimal use of obs

\[f.g. \text{ mean } = 0.5 B_1 + 0.5 B_2 \]

\[N_{obs} > N_{ens} \rightarrow \text{ least square fit} \]

\implies localisation ! \rightarrow see also Hendrik’s talk !

(or data selection / superobbing ?)

\implies basic idea for adaptive localisation: keep N_{obs} constant ($> N_{ens}$, not $>> N_{ens}$) !
LETKF, preliminary results: horizontal localisation

Caspari-Cohn function: scale $s = 100 \text{ km}$

$\rightarrow 0.4 \text{ at } r \approx (2)^{\frac{1}{2}} \cdot s \approx 141 \text{ km}$

$\rightarrow 0 \text{ at } r = 2 \cdot (10/3)^{\frac{1}{2}} \cdot s \approx 365 \text{ km}$

vertical cross section
(at rot lat = 2°, 8 Aug 2009, 12 UTC)

sum of localisation weights of obs

\approx effective number of obs $N_{\text{eff,obs}}$

$\rightarrow N_{\text{eff,obs}} >> N_{\text{ens}}$

\rightarrow too few degrees of freedom in order to fit the observations
LETKF, preliminary results: adaptive horizontal localisation

Caspari-Cohn function: scale $s = 50$ km

vertical cross section
(at rot lat = 2°, 8 Aug 2009, 12 UTC)

$N_{\text{eff,obs}} \rightarrow$ adaptive scale s:
appt s such that $N_{\text{eff,obs}} \approx 70$
and 30 km $\leq s \leq 80$ km

effective number of obs $N_{\text{eff,obs}}$

horizontal localisation scale s
LETKF, preliminary results: adaptive horizontal localisation

first guess mean
(inner domain average)
(variable vertical localisation, adaptive R and multiplicative covariance inflation ρ)

$s = 50$ km adaptive s

\rightarrow smaller spread
\rightarrow mostly smaller RMSE
(mixed results in verif vs. upper-air obs (T pos., wind neg.))
LETKF: account of model error / additive inflation

- **parameterisation of model error using statistics** (Tsyrlunikov, Gorin):
 - parameterisation: \(e = \mu \cdot F_{phys}(x) + e_{add} \)
 - estimate parameters by fitting to statistics from forecast **tendency** and observation **tendency** data (using a maximum likelihood based method)

failed in OSSE setup with simulated ME for finite-time 1 – 6 hr tendencies !!!

main methodological cause of failure: instantaneous ME is contaminated in **finite-time** tendencies by other tendency errors:

- trajectory drift as a result of ME themselves
- initial errors (plus the trajectory drift due to initial errors)

→ conclusion: observation accuracy and spatio-temporal coverage far from being sufficient to reliably estimate ME !

→ task is stopped !
LETKF: account of model error / additive inflation

→ new task for a **pattern generator** (PG)
 purely stochastic tool to generate 4-D pseudo-random fields with selectable scales / ampl.,
 used to generate additive perturbations / for stochastic physics
 (~ 0.4 FTE / y)

• **stochastic physics**: perturbing total physics tendency by a random factor
 at any given grid point (Palmer et al., 2009) (Torrisi)
 – basic Buizza version running, occas. crashed if microphysics tendencies perturbed
 → tuning required
 – perturb all physics tendencies in same way ?

→ 2013 Ekaterina Machulskaya from SFP for (more physically based) stochastic physics !
 + 1 N.N. (renewable energy project)

• additional additive inflation: - by scaled forecast differences (e.g. Bonavita et al.) ?
 - 3DVAR – B ?
• **radar**: assimilate 3-D radial velocity and 3-D reflectivity directly

1. observation operators implemented
 (Uli Blahak (DWD), Yuefei Zeng, Dorit Epperlein (PhD, KIT))
 - full, sophisticated
 - efficient (e.g. lookup tables for Mie scattering)
 - tested for sufficiently accurate and efficient approximations
 (e.g. 4/3 earth model for beam propagation)

2. assimilation experiments
 - technical work (feedback files)
 - 1 - 2 assimilation case studies (Zeng)
 - 2013: Klaus Stephan : test periods, tuning …
Task 4.3: use of GNSS slant path delay

- ground-based GNSS slant path delay SPD (Michael Bender, Erdem Altuntac)
 - produce & use tomographic refractivity profiles (Erdem Altunac, PhD)
 - implement non-local SPD obs operator & use SPD (Michael Bender)
 - first implement SPD obs operator in 3DVAR package
 (environment for work on tomography)
 - implement simple operator (refractivity along straight line)
 - adjoint (sensitivities needed for tomography)
 - implement complex obs operator with ray tracer
 - monitoring, test e.g. impact of straight line approximation
 - then implement obs operator in COSMO (in 2013)
Task 4.4: use of cloud info

- cloud information based on satellite and conventional data

1. derive incomplete analysis of cloud top + base height, using conventional obs (synop, radiosonde, ceilometer) and NWC-SAF cloud products from SEVIRI
 use cloud top height info in LETKF
 (Annika Schomburg, DWD / Eumetsat)

2. use SEVIRI brightness temperature directly in LETKF in cloudy (+ cloud-free) conditions, in view of improving the horizontal distribution of cloud and the height of its top (2013: Africa Perianez, Annika Schomburg)

→ compare approaches

Particular issues: non-linear observation operators, non-Gaussian distribution of observation increments
use of cloud info: NWCSAF cloud products (SEVIRI/MSG)

Retrieval algorithm needs temperature and humidity profile from a NWP model

→ cloud top height CTH_{sat} wrong if temperature profile in NWP model wrong!

→ combine good horizontal resolution of satellite info
 with good vertical resolution of radiosonde info:
 use nearby radiosondes with same cloud type to correct CTH_{sat}
use of cloud info:
assimilation of ‘cloud analysis’

if cloud observed with cloud top height CTH_{obs}, what is the appropriate type of obs increment?

- avoid too strong penalizing of members with high humidity but no cloud
- avoid strong penalizing of members which are dry at CTH_{obs} but have a cloud or even only high humidity close to CTH_{obs}

→ search in a vertical range Δh_{max} around CTH_{obs} for a ‘best fitting’ model level k, i.e. with minimum ‘distance’ d:

$$d = \min_k \sqrt{(f(RH_k) - f(RH_{\text{obs}}))^2 + \frac{1}{\Delta h_{\text{max}}} (h_k - CTH_{\text{obs}})^2}$$

- use $f(RH_{\text{obs}}) - f(RH_k) = 1 - f(RH_k)$
and $CTH_{\text{obs}} - h_k$
as 2 separate obs increments in LETKF
type of obs increment, if **no cloud** observed?

- assimilate $CLC = 0$ separately for high, medium, low clouds
- model equivalent: maximum CLC within vertical range
use of cloud info: assimilation of ‘cloud analysis’ : example

17 Nov 2011, 6 UTC (low stratus case)
pixels where observation has clouds
(output from feedback files)
use of cloud info: first assimilation experiment

‘cloud’ top height

Here: results of \textit{deterministic} run in LETKF framework

(Kalman gain matrix applied to standard (unperturbed) model integration)
use of cloud info:
first assimilation experiment

Relative humidity at ‘cloud’ level

FG

ANA

ANA – FG

Here: results of deterministic run in LETKF framework
(Kalman gain matrix applied to standard (unperturbed) model integration)
use of cloud info: first assimilation experiment

Relative humidity at cloud level

→ LETKF draws model cloud tops closer to obs

next:
- detailed evaluation (cross section, profiles...)
- single observation experiments
- tuning of observation error, thinning, localization
thank you for your attention