Status Overview on PP KENDA

Km-scale ENsemble-based Data Assimilation

christoph.schraff@dwd.de
Deutscher Wetterdienst, D-63067 Offenbach, Germany

Contributions / input by:

Hendrik Reich, Andreas Rhodin, Roland Potthast, Uli Blahak, Klaus Stephan, Africa Perianez, Michael Bender (DWD)

Annika Schomburg (DWD / Eumetat)

Yuefei Zeng, Dorit Epperlein (KIT Karlsruhe)

Daniel Leuenberger (MeteoSwiss)

Mikhail Tsyrulnikov, Vadim Gorin, Igor Mamay (HMC)

Lucio Torrisi (CNMCA)

Amalia Iriza (NMA)

- Task 1: General issues in the convective scale (e.g. non-Gaussianity)
- Task 2: Technical implementation of an ensemble DA framework / LETKF
- Task 3: Tackling major scientific issues, tuning, comparison with nudging
- Task 4: Inclusion of additional observations in LETKF

SMC: LETKF: implementation

- modifications in COSMO in official code (V4_24)
 (e.g. in order to have a sub-hourly update frequency)
- COSMO-DE LETKF implemented in NUMEX and tested (e.g. stand-alone 2-day experiment reproduced)
- GME-LETKF & ensemble INT2LM for DA cycle implemented in NUMEX, being tested, should be available end of Sept.
 - → in Oct., start first KENDA experiments in NUMEX over several days/weeks
 but: direct interpolation from 60 km to 2.8 km!
 - deterministic analysis not yet implemented in NUMEX
- ensemble LBC 2013 2014 : ensemble perturbations of interpolated ensemble GME fields, added to deterministic COSMO-DE LBC

LETKF:

implementation / activities

- in past year, still only preliminary LETKF experiments possible, using Hendrik's scripts:
 - up to 2 days (7 8 Aug. 2009): quiet + convective day)
 - → 3-hourly (15-min) cycles
 - 32 ensemble members
 - perturbed LBC: COSMO-SREPS, 3 * 4 members

→ therefore

- theoretical studies, toy model experiments related to adaptive localisation
 - ightarrow talk by Hendrik Reich
- benchmark, winter school on DA, support for HErZ centre,
 testing (e.g. NUMEX) ...
- only few COSMO-DE experiments related to adaptive localisation

LETKF:

implementation of verification

- production of 'full' NetCDF feedback files
 - make clean interfaces to observation operators / QC in COSMO : done
 - ... integrate them into 3DVAR package: in progress
 - and extend flow control (read correct (hourly) Grib files etc.) : to be done
 - should be ready by end of 2012 (for VERSUS)
- ensemble-related diagnostic + verification tool, using feedback files:
 (Iriza, NMA)
 - → computes statistical scores for different runs ('experiments'),
 - → focus: use exactly the same observation set in each experiment!
 - → select obs according to namelist values (area, quality + status of obs, ...)
 - problems with observation selection solved
 - implementing ensemble scores (reliability, ROC, Brier Skill Score, (continuous) Ranked Probability Score)
 - main part of documentation written

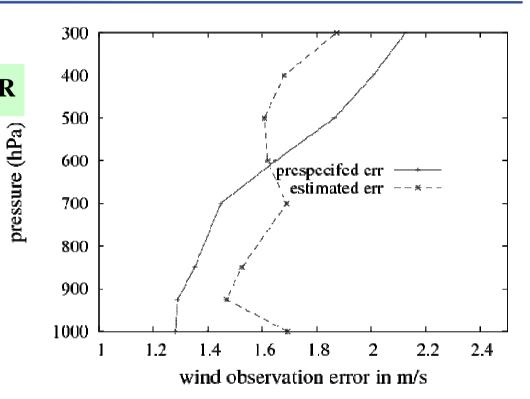
Task 3: scientific issues & refinement of LETKF

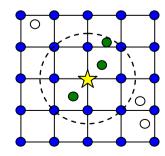
 lack of spread: (partly?) due to model error and limited ensemble size which is not accounted for so far

to account for it: covariance inflation, what is needed?

- → additive (see later)
- - ightarrow pre-specifed **R** is used for adaptive ho :
 - → need for careful specification / tuning of obs errors
- observation error covariance ${f R}$: also estimate adaptively (Li, Kalnay, Miyoshi, QJRMS 2009)

$$\langle (y - H(x_a))(y - H(x_b))^T \rangle = \mathbf{R}$$

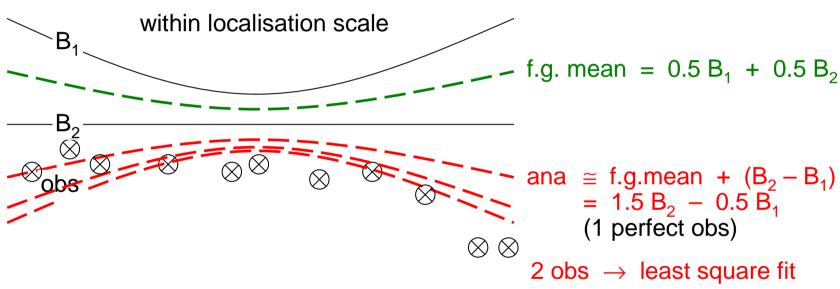

Task 3: scientific issues & refinement of LETKF


adaptive observation errors

$$\langle (y - H(x_a))(y - H(x_b))^T \rangle = \mathbf{R}$$

(in observation space)

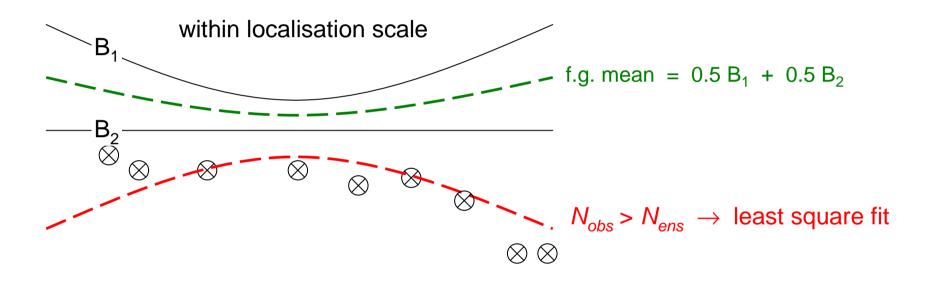
- adaptive R in ensemble space:
 adjusts total weight, not relative weight of obs
- localisation



LETKF (km-scale COSMO) : scientific issues / refinement

adaptive estimation of obs error covariance R
 (Li, Kalnay, Miyoshi, QJRMS 2009) , but our implementation: in ensemble space!

add obs, if already $N_{obs} > N_{ens}$:


- cannot be fitted well, improve analysis only slightly
- decrease analysis error ! $\mathbf{P}_{w}^{a} = \left[(k-1)\mathbf{I} + (\mathbf{Y}^{b})^{T}\mathbf{R}^{-1}\mathbf{Y}^{b} \right]^{-1}$
- ightarrow adaptive ${f R}$ takes that into account and increases ${f R}$

LETKF (km-scale COSMO) : scientific issues / refinement

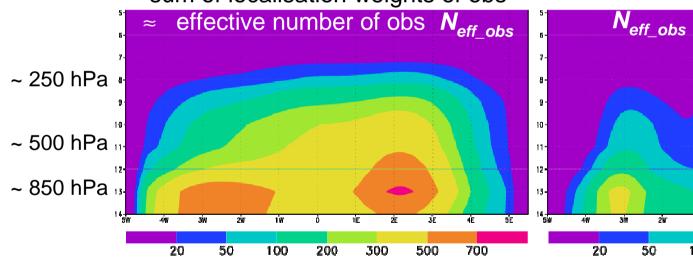
however: large N_{obs} : adaptive increase of $\bf R$ indicates non-optimal use of obs

- → localisation! → see also Hendrik's talk! (or data selection / superobbing?)
- \rightarrow basic idea for adaptive localisation: keep N_{obs} constant (> N_{ens} , not >> N_{ens})!

LETKF, preliminary results: horizontal localisation

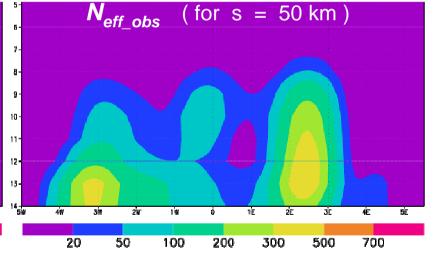
 \rightarrow reduce scale: s = 50 km

Caspari-Cohn function: scale s = 100 km


$$\rightarrow$$
 0.4 at $r \cong$ (2)\(^{1/2} \cdot s \simeq 141 \text{ km}\)

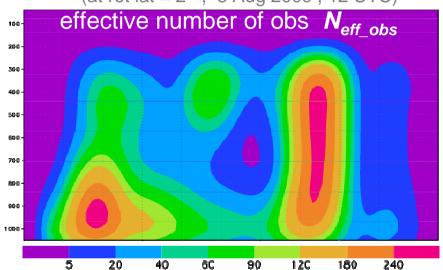
$$\rightarrow$$
 0 at $r = 2 \cdot (10/3)^{1/2} \cdot s \cong 365 \text{ km}$

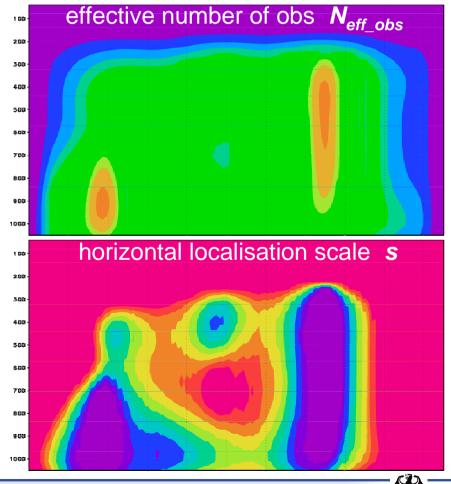
vertical cross section


(at rot lat = 2° , 8 Aug 2009 , 12 UTC)

sum of localisation weights of obs

→ too few degrees of freedom in order to fit the observations

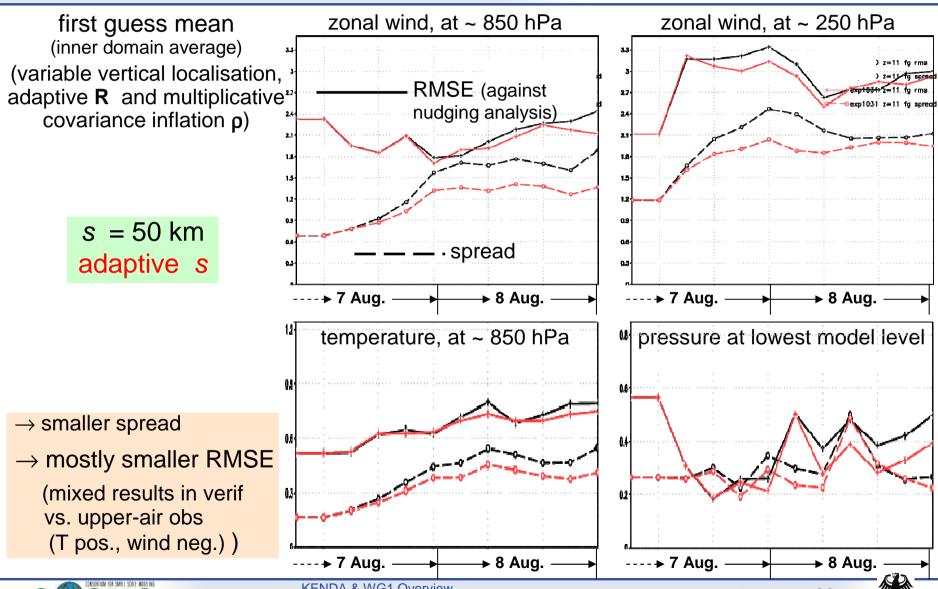

LETKF, preliminary results: adaptive horizontal localisation


Caspari-Cohn function: scale s = 50 km

vertical cross section

(at rot lat = 2° , 8 Aug 2009 , 12 UTC)

 \rightarrow adaptive scale s:
adapt s such that $N_{eff_obs} \cong 70$ and $30 \text{ km } \leq s \leq 80 \text{ km}$



60 70 80 90 100 110 120 130 140

LETKF, preliminary results: adaptive horizontal localisation

LETKF:

account of model error / additive inflation

- parameterisation of model error using statistics (Tsyrulnikov, Gorin):
 - parameterisation: $\underline{e} = \mu \cdot F_{phys}(\mathbf{x}) + \underline{e}_{add}$
 - estimate parameters by fitting to statistics from forecast *tendency* and observation *tendency* data (using a maximum likelihood based method)

failed in OSSE setup with simulated ME for finite-time 1 – 6 hr tendencies !!!

main methodological cause of failure: instantaneous ME is contaminated

in *finite-time* tendencies by other tendency errors :

- trajectory drift as a result of ME themselves
- initial errors (plus the trajectory drift due to initial errors)
- → conclusion: observation accuracy and spatio-temporal coverage far from being sufficient to reliably estimate ME!
- \rightarrow task is stopped!

LETKF:

account of model error / additive inflation

→ new task for a pattern generator (PG)

purely stochastic tool to generate 4-D pseudo-random fields with selectable scales / ampl., used to generate additive perturbations / for stochastic physics (~ 0.4 FTE / y)

- **stochastic physics**: perturbing total physics tendency by a random factor at any given grid point (Palmer et al., 2009) (Torrisi)
 - basic Buizza version running, occas. crashed if microphysics tendencies perturbed
 - → tuning required
 - perturb all physics tendencies in same way ?
 - → 2013 Ekaterina Machulskaya from SFP for (more physically based) stochastic physics!
 + 1 N.N. (renewable energy project)
- additional additive inflation: by scaled forecast differences (e.g. Bonavita et al.) ?
 3DVAR B ?

KENDA: use of additional observations use of radar obs

- radar: assimilate 3-D radial velocity and 3-D reflectivity directly
 - observation operators implemented
 (Uli Blahak (DWD), Yuefei Zeng, Dorit Epperlein (PhD, KIT))
 - full, sophisticated
 - efficient (e.g. lookup tables for Mie scattering)
 - tested for sufficiently accurate and efficient approximations
 (e.g. 4/3 earth model for beam propagation)
 - 2. assimilation experiments
 - technical work (feedback files)
 - 1 2 assimilation case studies (Zeng)
 - 2013: Klaus Stephan: test periods, tuning ...

Task 4.3: use of GNSS slant path delay

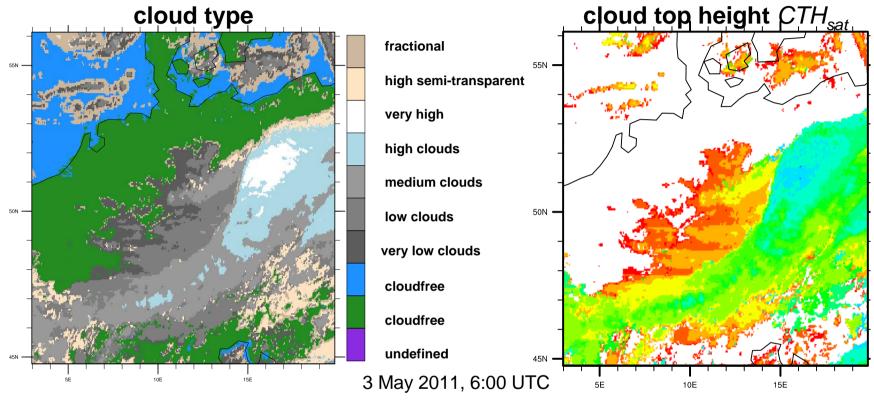
- ground-based GNSS slant path delay SPD (Michael Bender, Erdem Altuntac)
 - produce & use tomographic refractivity profiles (Erdem Altunac, PhD)
 - implement non-local SPD obs operator & use SPD (Michael Bender)
 - first implement SPD obs operator in 3DVAR package (environment for work on tomography)
 - implement simple operator (refractivity along straight line)
 - adjoint (sensitivities needed for tomography)
 - implement complex obs operator with ray tracer
 - monitoring, test e.g. impact of straight line approximation
 - then implement obs operator in COSMO (in 2013)

Task 4.4: use of cloud info

cloud information based on satellite and conventional data

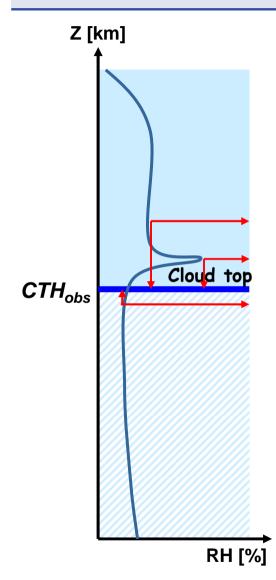
- derive incomplete analysis of cloud top + base height, using conventional obs (synop, radiosonde, ceilometer) and NWC-SAF cloud products from SEVIRI use cloud top height info in LETKF (Annika Schomburg, DWD / Eumetsat)
- 2. use SEVIRI brightness temperature directly in LETKF in cloudy (+ cloud-free) conditions, in view of improving the horizontal distribution of cloud and the height of its top (2013: Africa Perianez, Annika Schomburg)
- → compare approaches

Particular issues: non-linear observation operators,

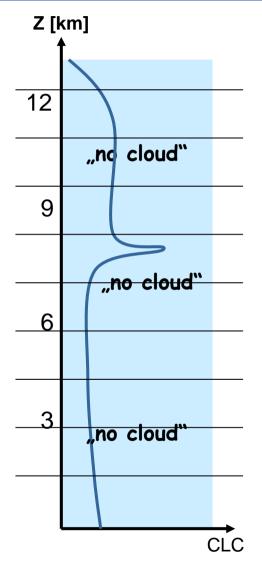

non-Gaussian distribution of observation increments

use of cloud info: NWCSAF cloud products (SEVIRI/MSG)

retrieval algorithm needs temperature and humidity profile from a NWP model


- ightarrow cloud top height CTH_{sat} wrong if temperature profile in NWP model wrong!
- → combine good horizontal resolution of satellite info with good vertical resolution of radiosonde info : use nearby radiosondes with same cloud type to correct CTH_{sat}

use of cloud info: assimilation of 'cloud analysis'

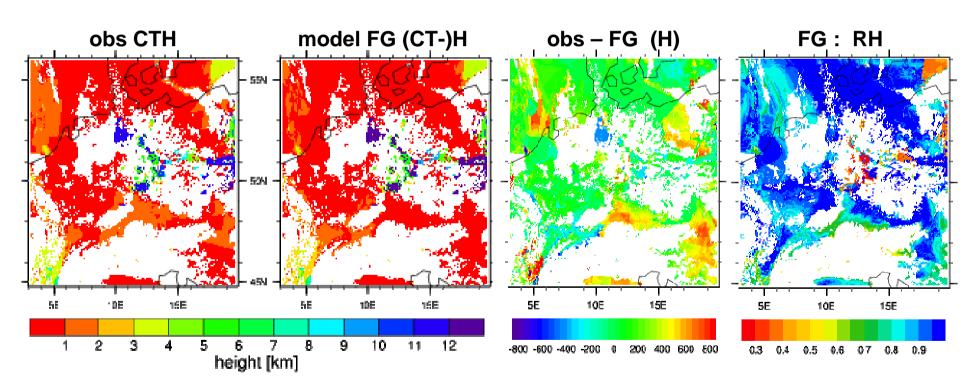

if cloud observed with cloud top height CTH_{obs} , what is the appropriate type of obs increment?

- avoid too strong penalizing of members with high humidity but no cloud
- avoid strong penalizing of members which are dry at CTH_{obs} but have a cloud or even only high humidity close to CTH_{obs}
- \rightarrow search in a vertical range Δh_{max} around CTH_{obs} for a 'best fitting' model level k, i.e. with minimum 'distance' d:

$$d = \min_{k} \sqrt{(f(RH_k) - f(RH_{obs}))^2 + \frac{1}{\Delta h_{max}} (h_k - CTH_{obs})^2}$$
function of = 1 height of model level k

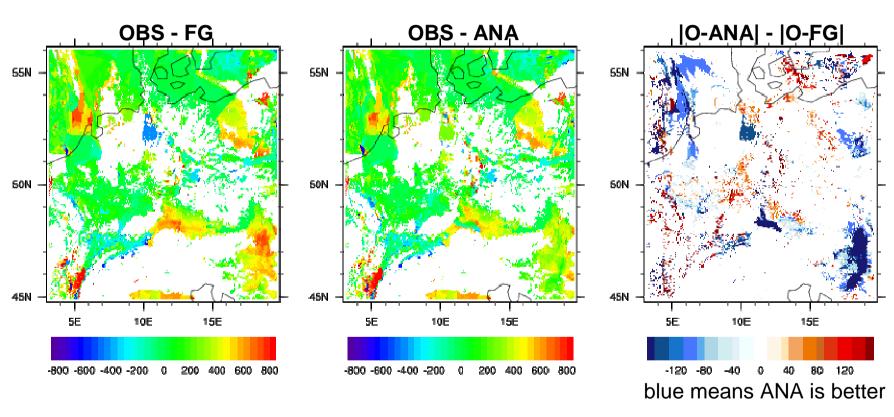
• use $f(RH_{obs}) - f(RH_k) = 1 - f(RH_k)$ and $CTH_{obs} - h_k$ as 2 separate obs increments in LETKF

type of obs increment, if **no cloud** observed?


- assimilate CLC = 0 separately for high, medium, low clouds
- model equivalent: maximum CLC within vertical range

use of cloud info: assimilation of 'cloud analysis': example

17 Nov 2011, 6 UTC (low stratus case) pixels where observation has clouds (output from feedback files)

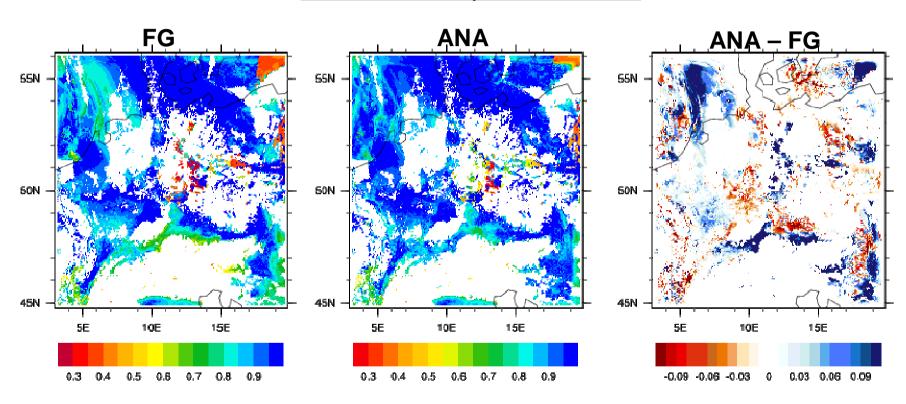


use of cloud info: first assimilation experiment

'cloud' top height

Here: results of deterministic run in LETKF framework

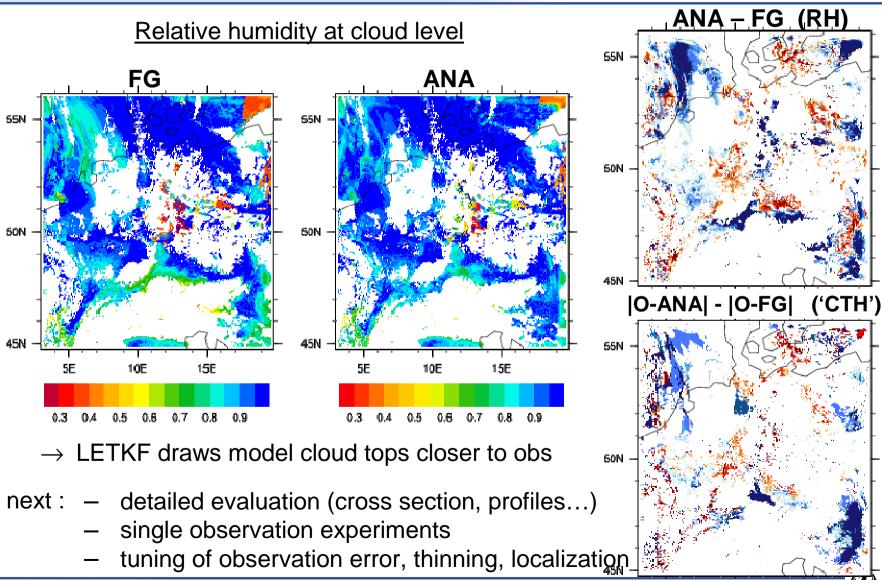
(Kalman gain matrix applied to standard (unperturbed) model integration)



use of cloud info: first assimilation experiment

Relative humidity at 'cloud' level

Here: results of deterministic run in LETKF framework


(Kalman gain matrix applied to standard (unperturbed) model integration)

use of cloud info: first assimilation experiment

Overview WG1 / KENDA

thank you for your attention

