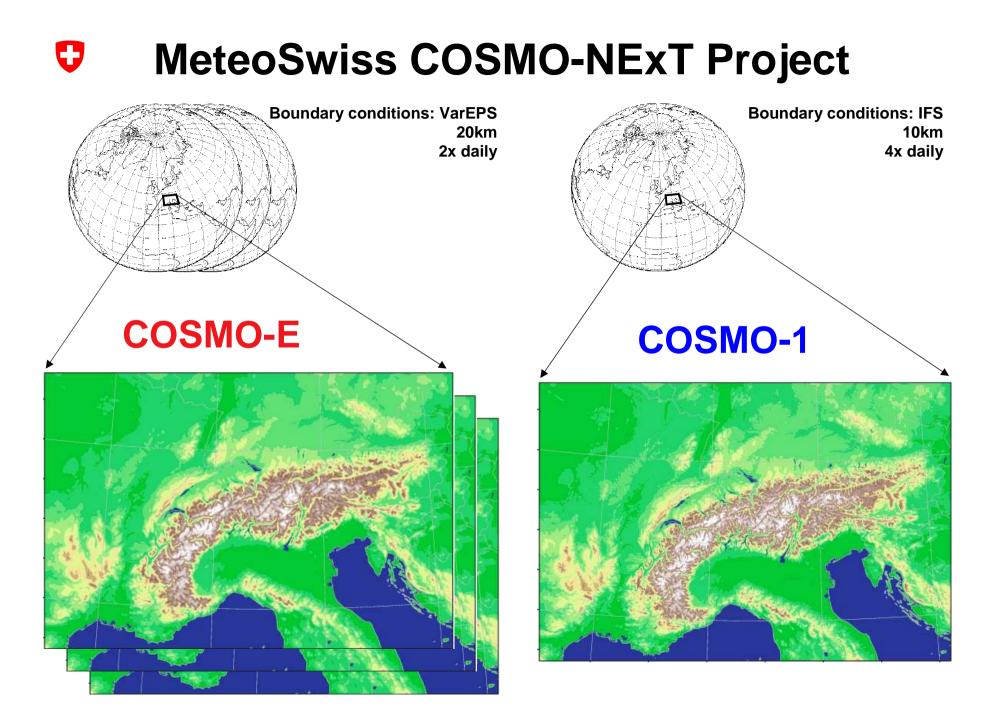


Schweizerische Eidgenossenschaf Confédération suisse Confederazione Svizzera Confederaziun svizra

Schweizerische EidgenossenschaftEidgenössisches Departement des Innern EDIConfédération suisseBundesamt für Meteorologie und Klimatologie MeteoSchweiz

MeteoSwiss Plans on km-scale EPS

Daniel Leuenberger, MeteoSwiss


COSMO General Meeting, Lugano, 10.9.2012

MeteoSwiss COSMO-NExT Project

- Client expectations
 - Two classes of products
 - High(est) resolution in space and time out to +24h, high update frequency
 - Regional probabilistic forecasts out to +3/5 days
 - Focus on Alpine region
 - Consistency of products across all scales (space & time)
 - High reliability (quality and availability of products)

\rightarrow Novel Expert Tools (NExT), project started 1.1.2012

- **COSMO-1** 1.1 km mesh-size, deterministic
- COSMO-E Ensemble-System, 2.2km mesh-size
- KENDA Ensemble Data Assimilation

COSMO-E

Initial Setup

•120h forecasts 2x daily

•2.2 km grid size, 532 x 388 grid points (13% larger than COSMO-2)•60 levels

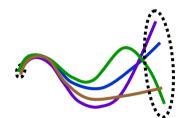
•dt = 20s

•21 members (depends on performance of COSMO code on our 2015 HPC system \rightarrow HP2C project / PP POMPA)

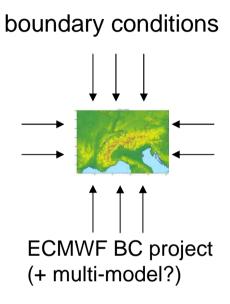
•Runtime < 120min for 120h lead-time

Requirements

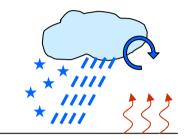
•New HPC machine


•Performance gain with acceleration by GPUs (HP2C/POMPA project) or at least by single precision code (~30% on CPU)

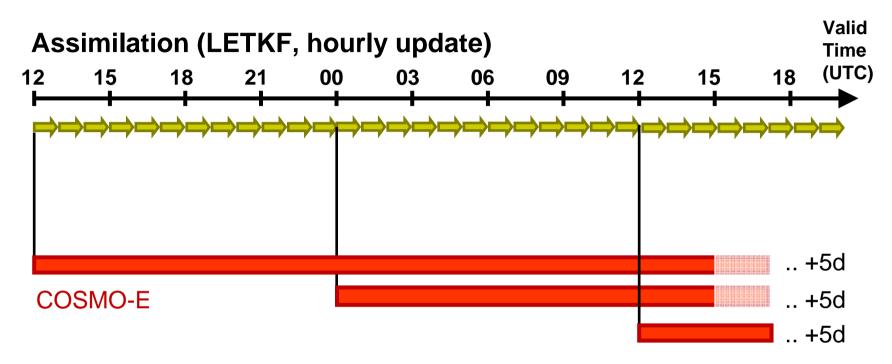
•LBCs with a mesh-size <= 20 km


•Initial perturbations from 2.2km KENDA system

C Ensemble perturbations


initial conditions

LETKF with ~40 members, PP KENDA



model physics

COSMO-DE-EPS & PP CONSENS (stochastic perturbations?)

Assimilation cycle

- Run every 1h to support nowcasting and on-demand activities
- Same resolution as for COSMO-E
- Provides initial condition for COSMO-E and COSMO-1

Deterministic analysis for COSMO-1

- Deterministic analysis for COSMO-1
- Downscale analysis increments and add to COSMO-1 deterministic first guess

$$\mathbf{x}_{1}^{a} = \mathbf{x}_{1}^{b} + \langle \Delta \mathbf{x} \rangle$$
$$\Delta \mathbf{x} = \mathbf{K} \left[\mathbf{y}^{o} - H(\mathbf{x}_{1}^{b}) \right] \quad \text{Kalman Gain from 2.2km KENDA}$$

COSMO-E Road Map

•	Evaluation of COSMO-DE-EPS	Started		
•	Investigate perturbed LBC for COSMO-E	Sep 2012		
•	Test perturbed analyses from KENDA	Q1 2013		
•	Adapt and tune model physics perturbations (developed within COSMO ensemble projects)	Q3 2013		
•	Regular COSMO-E runs	2014		
•	Make internal applications "COSMO-E ready" and develop COSMO-E products	2014		
•	COSMO-E operational	2015		
Developments in close collaboration with COSMO				

KENDA Road Map

•	Set up of LETKF with COSMO-E settings at CSCS	Finished		
•	Start with idealized experiments (OSSE)	Nov 2012		
	 Stable atmosphere at rest 			
	 Mountain-plain flow (Alpine Pumping) 			
•	Real case experiments with COSMO-E	Q1 2013		
•	Deterministic analysis for COSMO-1	Q2 2013		
•	Regular assimilation cycle	2014		
•	KENDA operational	2015		
Developments in close collaboration with COSMO				

COSMO KENDA Toolbox

- Several COSMO partners and Universities (e.g. HErZ Centre in Munich) now (have) start(ed) to work with COSMO KENDA system
- Similar needs concerning tools to work with ensemble DA, e.g.
 - Reading/writing of feedobs files
 - Diagnostic tools for investigation of LETKF performance
 - Generation of artificial obs from idealized COSMO simulations
- We should start to develop a common toolbox
 - What programming language? (Fortran? Python? Ruby?)
 - Gather what is already around!
 - Publish tools on the web?