

Localization: Theory and application

Hendrik Reich, África Periáñez, Roland Potthast

DWD, Germany

COSMO General meeting 2012, Lugano

Table of contents

Introduction

Our problem Data assimilation basics Ensemble Kalman Filter

Error Analysis on Ensemble Methods

Error analysis with and without background error Localization

Numerical results

Introduction Results Localization

Our problem

- Understand the basic properties of localization in the ensemble Kalman filter scheme.
- Find an adaptive localization scheme depending on the density of data, observation error, ...
- Decomposition of the error sources to determine its effect on the optimal localization length scale.
- We start with a brief description of ensemble Kalman filtering from a mathematical point of view, followed by

A > 4 B

numerical experimental results

Cost function and update formula

The cost function to be minimized is

$$J(\varphi) := \|\varphi - \varphi^{(b)}\|_{B^{-1}}^2 + \|f - H\varphi^{(b)}\|_{R^{-1}}^2,$$
(1)

where $\varphi^{(b)}$ is the *background state*, *f* are the *data*, *H* is the *observation operator* and the relation between variables at different points is incorporated by the covariance matrices *B* and *R*. Minimizing the cost function gives the *update formula*

$$\varphi^{(a)} = \varphi^{(b)} + BH^*(R + HBH^*)^{-1}(f - H\varphi^{(b)})$$
(2)

Ensemble Kalman Filter

In the EnKF methods the background convariance matrix is represented by $B^{(ens)} := \frac{1}{L-1}Q_kQ_k^*$. The ensemble matrix Q_k is defined as

$$Q_k := \left(\varphi_k^{(1)} - \overline{\varphi}_k^{(b)}, ..., \varphi_k^{(L)} - \overline{\varphi}_k^{(b)}\right), \tag{3}$$

where $\overline{\varphi}^{(b)}$ denotes the mean $\frac{1}{L} \sum_{l=1}^{L} \varphi^{(l)}$. Thus, we solve the update in a low-dimensional subspace

$$U^{(L)} := \operatorname{span}\{\varphi_k^{(1)} - \overline{\varphi}_k^{(b)}, ..., \varphi_k^{(L)} - \overline{\varphi}_k^{(b)}\}.$$
(4)

- **→** → **→**

The update formula now is

$$\varphi_k^{(a)} = \varphi_k^{(b)} + Q_k Q_k^* H^* (R + H Q_k Q_k^* H^*)^{-1} (f_k - H \varphi_k^{(b)})$$
(5)

The updates of the EnKF are a linear combination of the columns of Q_k . We can therefore write

$$\varphi_k - \varphi_k^{(b)} = \sum_{l=1}^{L} \gamma_l \left(\varphi_k^{(l)} - \overline{\varphi_k^{(b)}} \right) = Q_k \gamma \tag{6}$$

With

$$\widehat{Q}_k := HQ_k,\tag{7}$$

◆ 同 ♪ ◆ 三 ♪

the resulting the expresion to minimize is

$$J(\gamma) := \|Q_k \gamma\|_{B_k^{-1}}^2 + \|f_k - H\varphi_k^{(b)} - \widehat{Q}_k \gamma\|_{R^{-1}}^2,$$
(8)

Error analysis without background contribution

Lemma

Assume that H is injective, that we study true measurement data $f = H\varphi^{(true)}$ and consider the EnKF with data term only

$$J^{(data)}(\gamma) = \| (f - H\varphi^{(b)}) - \hat{Q}_k \gamma \|_{R^{-1}}^2$$
(9)

Then, for the analysis $\varphi^{(a)}$ calculated by the EnKF the difference $\varphi^{(a)} - \varphi^{(b)}$ is the orthogonal projection of $\varphi^{(true)} - \varphi^{(b)}$ onto the ensemble space $U_k^{(L)}$ and the analysis error is given by

$$E_k = d_{H^*R^{-1}H} \Big(U_k^{(L)}, \varphi_k^{(true)} - \varphi^{(b)} \Big), \tag{10}$$

where the right-hand side denotes the distance between a point $\psi = \varphi_k^{(true)} - \varphi^{(b)}$ and the subspace $U^{(L)}$ with respect to the norm induced by the scalar product $\langle ., . \rangle_{H^*R^{-1}H^*}$.

 $\ensuremath{\mathsf{Error}}$ analysis with and without background error $\ensuremath{\mathsf{Localization}}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Illustration of Lemma

Error analysis with background term

Theorem

Assume that H is injective, that we study true measurement data $f = H\varphi^{(true)}$ and consider an assimilation step using the EnKF. Then, for the analysis error in the step k we have the analysis error estimate

$$\|\varphi_{k}^{(true)} - \varphi^{(b)}\|_{H^{*}R^{-1}H} \ge E_{k} \ge d_{H^{*}R^{-1}H} \Big(U_{k}^{(L)}, \varphi_{k}^{(true)} - \varphi_{k}^{(b)} \Big).$$
(11)

Localization

LETKF basic idea: Localization to D, leading to

$$Q_{k,loc} := \left(\chi_D(\varphi_k^{(1)} - \overline{\varphi}_k^{(b)}), ..., \chi_D(\varphi_k^{(L)} - \overline{\varphi}_k^{(b)})\right).$$
(12)

We now have

$$B = \frac{1}{L-1} Q_{k,loc} Q_{k,loc}^{\mathsf{T}}$$
(13)

and

$$f_{k,loc} = \chi_D f_k \tag{14}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

We now solve the equations in the locally low-dimensional subspace

$$U_k^{(L,D)} := \operatorname{span}\{\chi_D(\varphi_k^{(1)} - \overline{\varphi}_k^{(b)}), ..., \chi_D(\varphi_k^{(L)} - \overline{\varphi}_k^{(b)})\}.$$
(15)

- **→** → **→**

Localization

Thus, in the above error estimates we just have to replace

$$E_{k} \rightarrow E_{k,loc}$$

$$(\varphi_{k}^{(true)} - \varphi^{(b)}) \rightarrow \chi_{D}(\varphi_{k}^{(true)} - \varphi^{(b)}) \qquad (16)$$

$$U_{k}^{(L)} \rightarrow U_{k,loc}^{(L)}.$$

to get the local error estimates.

Localization

Theorem

Assume that there is c, C > 0 such that for all $x \in D$ there is $l \in 1, ..., L$ such that

$$|\varphi^{(l)}(x)| \ge c, \tag{17}$$

and that

$$\left\|\nabla\varphi^{(l)}(x)\right\|_{\infty} \leq c, \ x \in D.$$
(18)

Then with sufficiently rich data and the true solution in H(D) we have

$$\sup_{x\in D} E_{k,loc}(x,\rho) \to 0, \ \rho \to 0.$$
(19)

1d toy model

- 1d model without cycling, uses least-square estimate to obtain an analysis (LSA). The truth is given by a (higher order) function.
- Either "pure" least square estimate without background (free LSA), or correction of a background state (bg LSA)
- Observations are generated from the truth with a specified observation error σ_{obs}.
- ▶ here, the analysis is given by straight lines a + bx where a, b are estimated from the observations.
- do this globally using all available observations or step by step in several intervals using a local subset of observations.
- The use of straight lines in some sense mimics the behaviour of an ensemble method, which also tries to approximate a high order state within a (lower order) subspace spanned by the background ensemble members (detailed later).

Fig.1: truth (blue line), observations (blue circles), background (green), free LSA (red) and bg LSA (black) for the set of localization radii, $\sigma_{obs} = 0.0005$

Introduction Introduction Error Analysis on Ensemble Methods Results Numerical results Localization

Fig.2: same as Fig.1, but for $\sigma_{obs} = 0.05$

(日)

∢ 臣 ≯

æ

Introduction Introduction Error Analysis on Ensemble Methods Results Numerical results Localization

Fig.3: same as Fig. 1, but for $\sigma_{obs} = 0.5$

<ロ> <同> <同> < 回> < 回>

æ

Results

- ▶ for all values of σ_{obs} the bg LSA is better than the first guess.
- For large σ_{obs} the free LSA is worse than the bg analysis.
- ▶ for small σ_{obs} the results of the free and the bg LSA become very similar.
- the optimal value of ρ_{loc} moves to smaller values with decreasing σ_{obs}.

Introduction Introduction Error Analysis on Ensemble Methods Results Numerical results Localization

Optimal localization radius

- estimate the optimal localization radius ρ_{loc} as a function of σ_{obs} and observation density d for the free analysis.
- two error sources: *approximation error* and *sampling error*.
- ► approximation error should decrease with smaller localization radii as a higher order function can be better approximated by a large number of straight lines. ~ \(\rho_{loc}^2\) (theorems on numerical interpolation)
- ▶ sampling error should decrease with larger localization radii as a larger number of observations gives a statistical better estimate. $\sim 1/\sqrt{N_{obs}}$, where N_{obs} is the number of observations.
- N_{obs} can be expressed as $N_{obs} = \int_{V} d(x) dV = 2d\rho_{loc}$.

$$\hat{e} \sim \rho_{loc}^2 + \frac{\sigma_{obs}}{\sqrt{2d\rho_{loc}}},$$
 (20)

Optimal localization radius

The minimum of this error (as a function of the localization radius $\rho_{\it loc})$ can be obtained, leading to

$$\rho_{loc}^{opt} \sim \left(\frac{\alpha}{4}\right)^{2/5},$$
(21)

where $\alpha = (\sigma_{obs}/\sqrt{2d})$. Thus, ρ_{loc}^{opt} as a function of σ_{obs} can be described by

$$\rho_{loc}^{opt} \sim \sigma_{obs}^{2/5},$$
(22)

Fig.4: theoretical and numerical results for error as a function of ρ_{loc} , $\sigma_{obs} = [0.0005 \, 0.05 \, 0.5].$

the optimal value of ρ_{loc} moves to smaller values with decreasing σ_{obs} .

Ξ.

< 4 ₽ > < Ξ

Introduction Introduction Error Analysis on Ensemble Methods Results Numerical results Localization

- when is LETKF similar to (bg) LSA?
 - ▶ "polynomial order" of fg-ens members and LSA background base functions (:= N_P) should be the same; additionally we need $(N_{ens} 1) \ge N_P$
- LETKF cannot "fit" more than N_{ens} observations, but we have to distinguish two cases:
 - if N_P and N_{ens} are comparable to "order" of the truth (ensemble subspace is good approximation to truth \rightarrow *approximation error* small), the error will decrease $\sim \frac{1}{\sqrt{N_{obs}}}$ even if $N_{obs} > (N_{ens} - 1)$ (sampling error)
 - ▶ if LETKF subspace is too small/not appropriate (model error?); approximation error dominates, additional obs don't have positive impact for N_{obs} > (N_{ens} - 1)

Fig.5 $\sigma_{obs} = 0.1$, $N_{ens} = 10$, $N_P = 3$ in LETKF bg ens

< □ > < 同 > < 三 >

LETKF similar to bg LSA; 3dVar ana is best

▲ 同 ▶ → ● 三

LETKF similar to 3dVar

adaptive horizontal localization

- Iocalization length scales depend on weather situation, observation density ...
- simple adaptive method: keep number of *effective* observations fixed, vary localization radius (*effective observations*: sum of **observation weights**)
- up to now only implemented in horizontal direction
- ► one has to define minimum / maximum radius, number of effective observations N^{eff}_{obs} = α(N_{ens} − 1), α ≥ 1
- ideal number of effective observations depends on ensemble size, ...

< 🗇 > < 🖃 >

Christoph already showed first results

Outlook / Conclusion

- 1d model: optimal localization length ρ_{loc} depends on σ_{obs}; this (first results) also seems to be the case for the L95-LETKF.
- ▶ 1d model: 2-step ana gives better results if two obs types and $\sigma^1_{obs} >> \sigma^2_{obs}$.
- ► 1d model: for fixed \(\rho_{loc}\) in LETKF: \(N_{obs} > (N_{ens} 1)\) gives better results only if ensemble-subspace is appropriate
- > 2d model LETKF: similar results found
- "classical" view on localization in EnKF: up to which distance can we trust the correlations in the ensemble?

 (How) are both approaches connected? Do they lead to similar optimal localization radii? Should be tested (L95-LETKF).

Outlook / Conclusion

- COSMO: conventional data with large ρ_{loc} to get large scale analysis increments, radar data in second analysis step with small ρ_{loc} to get small scale variations. Maybe 3rd step to get nonlocal radiance observations (without vertical localization).
- with one analysis step only, different kinds of obs with different observation density dobs:
 - d_{obs} "high" $\rightarrow \rho_{loc}$ "small", d_{obs} low $\rightarrow \rho_{loc}$ large.
- ▶ in order to save time: reduced grid (weights) can be different in the analysis steps. Problem: 4d-aspect, observation operators in COSMO-model. Linear approximation (as in obs impact studies): Y_a = Y_bW.

・ロト ・同ト ・ヨト ・ヨト

next steps: investigate influence of observation density, nonlocal observations within 2d-model / L95-LETKF