cmcc

ACTIVITY PERFORMED AT CIRA WITHIN THE FRAME OF PP-CDC

Pier Luigi Vitagliano, Giovanni Petrone

CIRA - CMCC

OUTLINE

- Motivations and goals
- Basic concepts
- Test cases
- Conclusions
cmcc

COSMO WG2

Prioritary Project
 Conservative Dynamical Core

Goals:
To get a dynamical core with explicit conservation properties: (mass, energy, ..)
To improve capability of the model to work in steep terrain

Motivations:

Conservation of mass, momentum, energy are fundamental principles
Grid size < 3km requires explicit simulation of diabatic processes and steeper slopes
cmcc
Centro Euro-Mediterraneo sui Cambiamenti Climatici

THE ACTIVITY IS FOCUSED ON TWO OBJECTIVES:

- Test spatial schemes based on Finite Volumes in ($\rho, \rho \underline{\mathbf{U}}, \boldsymbol{\rho e}$) variables set
- Test a time integration scheme ${ }^{\left({ }^{*}\right)}$ to be implemented in COSMO

A CODE FOR IDEALIZED TESTS (CONSOL) WAS INITIALLY DEVELOPED, BASED UPON FINITE VOLUMES AND DUAL TIME STEPPING (DTS)

DTS HAS BEEN IMPLEMENTED IN COSMO, KEEPING ORIGINAL SPATIAL SCHEME. CURRENTLY IN PRELIMINARY TESTING PHASE
(*) Jameson, A., 1991: Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings. AIAA Paper 91-1596

MATHEMATICAL FORMULATION

$$
\frac{\partial}{\partial t} \int_{\Omega} \underline{W} d V+\oint_{\partial \Omega} \underline{\underline{F}} \cdot \underline{n} d S=\int_{\Omega} \underline{B} d V
$$

$$
\begin{gathered}
\underline{\boldsymbol{W}}=\left[\begin{array}{c}
\rho^{\prime} \\
\rho u \\
\rho v \\
\rho w \\
\rho e
\end{array}\right] \quad \underline{\boldsymbol{F}}_{x}=\left[\begin{array}{c}
\rho u \\
\rho u^{2}+p^{\prime} \\
\rho u v \\
\rho u w \\
\rho u h
\end{array}\right] \underline{\boldsymbol{F}}_{y}=\left[\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p^{\prime} \\
\rho v w \\
\rho v h
\end{array}\right] \underline{\boldsymbol{F}}_{z}=\left[\begin{array}{c}
\rho w \\
\rho u w \\
\rho w v \\
\rho w^{2}+p^{\prime} \\
\rho w h
\end{array}\right] \quad \underline{\boldsymbol{B}}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\rho^{\prime} g_{z} \\
\rho \underline{U} \cdot \underline{g}
\end{array}\right] \\
p=p_{0}+p^{\prime} \\
\rho=\rho_{0}+\rho^{\prime} \\
p_{0_{z}}=g \rho_{0}
\end{gathered} \quad \underline{U}=(u, v, w) \quad p=(\gamma-1) \rho\left(e-\frac{1}{2} U^{2}\right), ~ h=e+\frac{p}{\rho} .
$$

conservation of mass, momentum and total energy are physical fundamental principles

SPATIAL DISCRETISATION

- Integral form allows discontinuities in the flow field
- Finite Volumes approach
- Conservation laws applied to each sub-domain (cell)
- Variables stored at cell centers
- Fluxes approximated at cell face centers
- Artificial dissipation and diffusion in flux form
- No constraints for cells shape and size (clustering)

cmcc
Centro Euro-Mediterraneo
sui Cambiamenti Climatici

DUAL TIME STEPPING

$$
\partial \underline{W}^{\text {new }} / \partial \tau+1 / 2\left(3 \underline{W}^{\text {new }}-4 \underline{W}^{\text {now }}+\underline{W}^{\text {now-1 }}\right) / \Delta t+\boldsymbol{R}\left(\underline{W}^{\text {new }}\right)=0
$$

add a pseudo-time τ derivative to the unsteady equation advance the solution in τ until the residual of the unsteady equation is negligible
iterations in τ are performed by explicit Runge-Kutte scheme convergence acceleration techniques can be adopted without loss of time accuracy: residual averaging, local time stepping, multigrid
formulation is A -stable and damps the highest frequency very large physical time step Δt can be used

DUAL TIME STEPPING

Example of time integration with DTS:
a norm of the residuals of mass transport equations is monitored
cmcc

TIME INTEGRATION

CURRENT TIME INTEGRATION SCHEME IN COSMO IS A TimeSplitting Method (*)

It is based on 3 stages RK (or Leap-Frog) for the large time steps and modified Crank-Nicholson for the small time steps

The Klemp-Wilhelmson time splitting algorithm, based on Leap-Frog for large time step

Runge-Kutta 3 stages time iterations in COSMO

variables are re-computed advancing in physical time with two different time steps.

TIME INTEGRATION WITH DTS

variables are re-computed until a physical time step is converged within a given accuracy
instead of a number of small steps for three RK stages, a number of (multi)stages
acceleration techniques non time accurate are allowed: residuals averaging, preconditioning, local time stepping, multigrid

Dual time iterations

Convergence toward time t+ Δt

IDEAL TEST CASES PERFORMED WITH CONSOL

INERTIA-GRAVITY WAVE

GAUSSIAN HILL

ATMOSPHERE AT REST

TRANSPORT OF CONSERVED QUANTITY
cmcc

IMPLEMENTATION OF DTS IN COSMO

- Test code in development
- Limited intervention on original COSMO
- Major modifications in 2 subroutines only
- COSMO data structure not modified
- Currently only initial tests with idealised cases
cmcc

COMPARISON RK3 vs DTS

Gaussian ridge $\mathrm{h}=10 \mathrm{~m} \mathrm{a}=0.5 \mathrm{~km}$

COMPARISON RK3 vs DTS

Gaussian ridge $\mathrm{h}=300 \mathrm{~m} \quad \mathrm{a}=10 \mathrm{~km}$

cmcc

DTS Gaussian ridge $\mathrm{h}=300 \mathrm{~m} \mathrm{a}=10 \mathrm{~km}$ $\Delta x=1 \mathrm{~km} \quad \mathrm{dt}=100 \mathrm{~s}$

Chncc

CONCLUSIONS (1)

- FV and DTS implemented in CONSOL can simulate the test cases
- DTS works with a wide range of time steps
- II order spatial schemes (cell center) require denser mesh
- Specific treatment of pressure gradient term could improve accuracy
cmcc

CONCLUSIONS (2)

- DTS implemented in COSMO works with some ideal test cases
- Results are comparable with original COSMO version
- Larger time steps can be achieved
- More work is required to evaluate efficiency and accuracy

