
COSMO General Meeting
September 2012, Lugano 1C2SM

Internode communication (CPU & GPU)

Carlos Osuna (C2SM), Mauro Bianco (CSCS), Ugo Varetto (CSCS),
 Tobias Gysi (SCS), Oliver Fuhrer (MeteoSwiss), Peter Messmer (NVIDIA)

COSMO General Meeting
September 2012, Lugano 2C2SM

Introduction to Inter-Node Communication

1. Stencil A computes field1 at the inner domain

COSMO General Meeting
September 2012, Lugano 3C2SM

Introduction to Inter-Node Communication

1. Stencil A computes field1 at the inner domain

3. Stencil B requires updated values of field1
 at the boundaries.

COSMO General Meeting
September 2012, Lugano 4C2SM

Introduction to Inter-Node Communication

2. Communicate halos for field1 from neighbour PE's.

1. Stencil A computes field1 at the inner domain

3. Stencil B requires updated values at the boundaries.

COSMO General Meeting
September 2012, Lugano 5C2SM

Introduction to Inter-Node Communication

In COSMO halo exchanges between neighbours are handled by
 exchg_boundaries subroutine

HP2C cosmo project needs a library
that can handle inter-GPU communication.

HP2C Cosmo Dycore is completely
rewritten in C++, which requires a communication
library (available from C++) to deal with halo exhances

New features required:

 Systematically use asynchronous communication.

COSMO General Meeting
September 2012, Lugano 6C2SM

The Generic Communication Library (GCL)

GCL is a library that performs any possible halo exchange pattern of communication.

Developed at CSCS, in C++03, abstracts the communication layer for halo exchanges.

Currently uses MPI, it can be adapted to any backend for inter-node communication.

Features:

Interface for asynchronous communication

Arbitrary data and grid of processes layouts

Handles multiple fields with different halo exchange definitions in a single communication

Generic All-to-All

CPU and GPU communication (transparent to the user)

Several strategies for packing & unpacking (for CPU and GPU)

COSMO General Meeting
September 2012, Lugano 7C2SM

Asynchronous Communication Using GCL

Synchronous communication:

Stencil A
(compute U)

Do comm
U

Stencil B
(compute W)

timeline

COSMO General Meeting
September 2012, Lugano 8C2SM

Asynchronous Communication Using GCL

Asynchronous communication:

Stencil A
(compute U)

Stencil B
(compute W)

Start comm
U

timeline

If Stencil B does not need U field, we can overlap communication with Stencil B
 computation

Using asynchronous communication with GCL in the Dycore we could reduce
communication time by 70%.

Wait comm
U

9HP2C COSMO-OPCODE Meeting
Zurich - 12th Jun 2012
COSMO General Meeting, September 2012, Lugano

 // Apply qc x advection and start y boundary update
 advectionXQC.Apply();
 haloUpdateYQC.StartApply();

 // apply qv x advection and start y boundary update
 advectionXQV. Apply();
 haloUpdateYQV.StartApply();

 // wait for the boundary update and apply qc y advection
 haloUpdateYQC.WaitForApply();
 advectionYQC.Apply();

 // wait for the boundary update and apply qv y advection
 haloUpdateYQV.WaitForApply();
 advectionYQV.Apply();

Compute field

Immediately
start halo-update

Do other computations
(no wait for exchange)

QC needed!!
Wait for exchange

Stencil that uses QC

10HP2C COSMO-OPCODE Meeting
Zurich - 12th Jun 2012
COSMO General Meeting, September 2012, Lugano

Communication Performance (CPU):

Tests measurements comparing GCL and exch_boundaries subroutine.
3 lines halo exchange of 50 3d fields (60 levels).

It took several months to optimize performance (specially in packing & unpacking)

grid of 4x4 PE
on XK6 Cray.
Only 1 mpi task per node.
Every task populated with

8 OMP.

domain size of each PE

11HP2C COSMO-OPCODE Meeting
Zurich - 12th Jun 2012
COSMO General Meeting, September 2012, Lugano

Communication Performance:

Bandwidth tests measurements comparing GCL in cpu and gpu mode,
and exch_boundaries subroutine.
3 lines halo exchange of 50 3d fields (60 levels)

cpu data:
 grid of 4x4 PE on Cray XK6
gpu data:
 grid of 2x2 PE on
 IBM iDataPlex with FERMI M2090

Only 1 mpi task per node.
Every (CPU) task populated

with 8 OMP.

CPU & GPU data extracted
 from different systems.

12HP2C COSMO-OPCODE Meeting
Zurich - 12th Jun 2012
COSMO General Meeting, September 2012, Lugano

Few Notes on GPU communication:

To perform inter-GPU communication,
 user can always offload data and perform communication at CPU:

cudaMemcpy(buf_cpu, buf_gpu,size, cudaMemcopyDeviceToHost);
MPI_Send(buf_cpu, size,..., MPI_COMM_WORLD)

MPI_Recv(buf_cpu, size, …, MPI_COMM_WORLD);
cudaMemcpy(buf_gpu, buf_cpu, size, cudaMemcopyHostToDevice);

Sender

Receiver

But this solution offers poor performance.

Mvapich2/1.8 supports GPU to GPU communication:

GCL solution to inter-GPU communication:

MPI_Send(buf_gpu, size, …, MPI_COMM_WORLD)

13HP2C COSMO-OPCODE Meeting
Zurich - 12th Jun 2012
COSMO General Meeting, September 2012, Lugano

Fortran communcation with GCL:

There exist a Fortran wrapper to the communication framework in C++ that uses GCL.

This provides:
● Reuse C++ code that setup halo exchanges in GCL & minimize code.
● Asynchronous interface that can overlap communication and

computation in fortran.

GCL

MPI

HP2C Dycore
communication framework

Fortran Communication
 Wrapper

14HP2C COSMO-OPCODE Meeting
Zurich - 12th Jun 2012
COSMO General Meeting, September 2012, Lugano

Summary

Positive experience using GCL to handle communications in C++ Dycore.

No adaptation of user code needed to use it for GPU.

For CPU is integrated into the HP2C Dycore, and default communication handler
since several months.
GPU is functional, work in progress tuning performance for packing & unpacking.

Fortran interface to Communication Framework & GCL is implemented and tested.

Using asynchronous communication reduces communication time by ~70%.

Good performance numbers for CPU

Next:

● Continue testing and tuning performance.
● Replace exchg_boundaries() with Fortran wrappers for parts of the code which
will run on GPU.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

