

The use of COSMO model in the CNMCA Operational LETKF System: First Results

<u>L. Torrisi</u> and F. Marcucci

CNMCA, National Meteorological Center, Italy

COSMO-General Meeting, Lugano, 10-13 September 2012

- The CNMCA Ensemble Data Assimilation System (LETKF)
- Comparison HRM-COSMO LETKF:
 - COSMO model settings
 - Observation increment statistics
 - COSMO-ME objective verification
- Conclusions and future developments

CNMCA LETKF Implementation

- 40+1 member ensemble at 0.09° (~10Km) grid spacing (HRM model), 40 hybrid p-sigma vertical levels (top at 10 hPa)
- 6-hourly assimilation cycle run and (T,u,v,qv,ps) as a set of control variables
- Observations: RAOB, SYNOP, SHIP, BUOY, AIREP, AMDAR, ACAR, AMV (MSG, MET7), WindPROF, SCAT(METOP), AMSU-A (METOP,NOAA) radiances (very soon)
- Localization: horizontally with 800 Km circular local patches; vertically to layers whose depth increases from 0.2 scale heights at the lowest model levels to 2. scale heights at the model top (obs weight smoothly decay with a pseudo-gaussian function)
- Adaptive selection radius using a fixed number of effective observations (sum of obs weights)
- Inflaction: multiplicative (relaxation to prior spread), additive (NMC), BC (IFS EPS), SST
- Daily blending of the mean upper level analysis with the IFS analysis to compensate the limited satellite data usage

CNMCA NWP SYSTEM since 1 June 11

LETKF analysis ensemble (40+1 members) every 6h

using TEMP, PILOT, SYNOP, SHIP, BUOY, Wind Profiler,

AMDAR-ACAR-AIREP, MSG/MET7 AMV, METOP scatt.

Ensemble Data Assimilation:

- HRM hydrostatic model is subtituted by COSMO nonhydrostatic model in CNMCA LETKF system taking into account of that:
 - The model top is raised from ²³⁵/₉₂1.5km (²³⁵/₉₂43hPa) to ²³⁵/₉₂6km (²³⁵/₉₁8hPa) using 45 vertical levels to reduce the influence of the sponge layer (upper levels Rayleigh damping zone)
 - Initial pressure perturbation fields are derived using the hydrostatic balance equation
- The CNMCA-LETKF system using COSMO model is experimental running since February 2012 with basicly the same settings of the operational one
- Observation increment statistics (obs-BG) is continously monitored and deterministic forecasts from this system are objectively verified against conventional observations

HRM vs COSMO LETKF

SPEC. HUMIDITY

TEMPERATURE

-10

-5

0

5

0

10

20

0

5

10

15

CNMC

HRM vs COSMO LETKF: OOUTC

CNMC

RAOB obs increment statistics on 40 p-levels from 28 apr 2012 to 01 jun 2012

COSMO LETKF: OOUTC

Nocturnal Colder Bias in COSMO Background Ensemble Mean

10-11 May 2012 CASE STUDY

Upper level ridge over SW Europe \rightarrow Subsidence \rightarrow Stable condition

ROME Analysis VT:Giovedi 10 Maggio 2012 00UTC Geopotenziale 500 hPa + Temperatura 500 hPa n.a.

HRM vs COSMO LETKF: OOUTC

PRATICA DI MARE RAOB 20120510

900

16245

NMCA

00UTC HRM VS COSMO

Radiosound Theta

292

Theta

294

296

298

The strong cooling thermal inversion is not well represented using COSMO model. HRM makes a better job!

Τd

Т

COSMO LETKF: OOUTC

NA

Sensitivity to the turbulence scheme

10-11 May 2012 CASE STUDY

RAOB obs increment statistics on 45 COSMO model levels at 00UTC

OLD (DIAG. TKE) VS OPE (PROG. TKE) TURBULENCE SCHEME

HRM vs COSMO LETKF: 00 UTC

TEMPERATURE MONTHLY STATISTICS

CNMCA

HRM vs COSMO LETKF

CNMCA

RAOB obs increment statistics on 40 p-levels from 28 apr 2012 to 01 jun 2012 SCAD:06 BIAS Q STDV Q SPREAD O SCAD:00 BIAS Q STDV Q SPREAD Q 300 300 300 300 300 ope ope ٠. ope . . ope ope . ope exp exp • exp exp exp . exp 400 400 400 400 400 400 **00 UTC 06 UTC** 500 500 500 500 600 600 600 600 600 600 700 700 700 700 700 700 800 800 800 800 800 800 900 900 900 900 900 900 6 1000 1000 1000 1000 1000 1000 Small SPEC. HUMIDITY AT DIFFERENT 0.5 -0.5 0.5 <u>0.5</u> 0 0.5 Ω sample SCAD:12 BIAS Q SPREAD Q 300 size at 06 300 300 300 300 •••••••• ope · ope --- ope ope ope and 18 . exp . exp . exp . exp .**)**... exp e> 400 400 400 400 400 UTC **18 UTC 12 UTC** 500 500 500 500 500 600 600 600 600 600 600 700 700 700 700 700 700 Smaller qv \$é 800 800 800 800 800 obs incr. (moister) 900 900 900 900 900 bias in 90 **COSMO** LETKF 1000 1000 1000 1000 1000 1000 -0.5 0 0.5 0 0.5 1 0 0.5 1 -0.5 0 0.5 0 0.5 1.5 0 0.5

HRM vs COSMO LETKF: 12 UTC

RAOB obs increment statistics on 40 p-levels from 28 apr 2012 to 01 jun 2012 at 12UTC

OBS INCR. BIAS

CNMCA

COSMO LETKF: 12 UTC

Diurnal Moister Bias in COSMO Background Ensemble Mean

28-29 May 2012 CASE STUDY

Weak cyclonic circulation over SE Europe

COSMO LETKF: 12 UTC Sensitivity to the turbulence scheme

28-29 May 2012 CASE STUDY

ັດ

20

٥

10

15

RAOB obs increment statistics on 45 COSMO model levels at 12 UTC

OLD (DIAG. TKE) VS OPE (PROG. TKE) TURBULENCE SCHEME

COSMO LETKF: 12 UTC Sensitivity to the convection scheme

28-29 May 2012 CASE STUDY

RAOB obs increment statistics on 45 COSMO model levels at 12 UTC

EXP (KAIN-FRITSCH) VS OPE (TIEDTKE) CONVECTION SCHEME

HRM vs COSMO LETKF: 12 UTC

SPEC. HUMIDITY MONTHLY STATISTICS

CNMCA

Summary of Results

From observation increment statistics :

Nocturnal larger negative temperature bias near the surface in COSMO-LETKF background ensemble mean

 COSMO-LETKF with TKE prognostic turbulence scheme tends to produce less intense cooling thermal inversion than the HRM-LETKF (even if it does not well reproduce the observed situation).

Is the prognostic TKE scheme too diffusive ?

• The use of the old turbulence scheme slightly improves the performance of COSMO-LETKF background ensemble mean near the surface

Diurnal larger positive humidity bias in the middle-lower troposphere using COSMO model

- COSMO-LETKF with TKE prognostic turbulence scheme tends to moisten the troposphere more than the HRM-LETKF.
- The use of the old turbulence scheme seems to have a very small positive impact
- The use of the Kain-Fritch convection scheme does not improve the performance of COSMO-LETKF background ensemble mean

HRM vs COSMO LETKF: 00 UTC

COSMO-ME objective verification against SYNOP

6h ACCUMULATED PRECIPITATION (> 0 mm) - 00 UTC RUN Verification from 28/04/12 to 27/08/12 COSMO-ME_OPE: Blue_COSMO-ME_EXP: Red

Very slight precipitation over-estimation using COSMO-LETKF

Conclusions

- CNMCA has planned to substitute HRM with COSMO model in its ensemble data assimilation (LETKF) system, which is used operationally to initialize the deterministic COSMO-ME model
- COSMO-LETKF and HRM-LETKF performances were compared for spring-summer 2012
- Observation increment statistics shows two well-known deficiencies. COSMO model is too humid and the prognostic TKE turbulence scheme is not able to reproduce correctly the strong cooling inversion in spring.
- Objective verification of COSMO-ME forecasts from both LETKF systems shows no significant differences, except for a very slight precipitation over-estimation using COSMO-LETKF

- · Comparison of COSMO and HRM-LETKF in fall-winter period
- · Assimilation of AMSU-B/MHS and IASI retrievals
- · Use of KENDA and contribution to its improvement
- · Tests with shorter assimilation window
- Further tuning of model error representation (tuning of cov. localization, self-evolved additive noise, bias correction, etc.)
- Implement a Short-Range EPS based on LETKF

Thanks for your attention!

COSMO LETKF: OOUTC

Sensitivity to the turbulence scheme

PRATICA DI MARE RAOB 20120510

0 00UTC

OLD VS OPE TURBULENCE SCHEME

HRM vs COSMO LETKF: OOUTC

CNMC