NVIDIA GPUs in Earth System Modelling

Thomas Bradley

Agenda: GPU Developments for CWO

- Motivation for GPUs in CWO
- Parallelisation Considerations
- GPU Technology Roadmap

MOTIVATION FOR GPUS IN CWO

NVIDIA GPUs Power 3 of Top 5 Supercomputers

#2 : Tianhe-1A 7168 Tesla GPU's 2.5 PFLOPS

#4 : Nebulae 4650 Tesla GPU's 1.2 PFLOPS

#5 : Tsubame 2.0 4224 Tesla GPUs 1.194 PFLOPS

We not only created the world's fastest computer, but also implemented a heterogeneous computing architecture incorporating CPU and GPU, this is a new innovation.

Premier Wen Jiabao Public comments acknowledging Tianhe-1A

Comparison with Top Supercomputer K in Japan

K Computer: Custom SPARC Processors

8.1 PetaFlop
68,500 CPUs
672 Racks
10 Megawatt
\$700 Million

2.3x better flops/rack1.06x better flop/watt2.6x better \$/flop

Tsubame: Intel CPUs + NVIDIA Tesla

1.2 PetaFlop
2K CPUs, 4K GPUs
44 Racks
1.4 Megawatt
\$40 Million

Real Science on GPUs: ASUCA NWP on Tsubame

Tsubame 2.0 Tokyo Institute of Technology

- 1.19 Petaflops
- 4,224 Tesla M2050 GPUs

3990 Tesla M2050s 145.0 Tflops SP 76.1 Tflops DP

Simulation on Tsubame 2.0, TiTech Supercomputer

CWO Performance: Full GPU Approach

Physics Only

- WRF
- COSMO (1)

Dynamics Only

- COSMO (2)
- · ICON
- NIM (sample physics)
- CAM
- HOMME
- HIRLAM

Full GPU Approach

- ASUCA
- GEOS-5
- GRAPE

NVIDIA Features GPUs at Conferences

Supercomputing 2010 | Nov 2010 | New Orleans, LA

 COSMO: GPU Considerations for Next Generation Weather Simulations Thomas Schulthess, Swiss National Supercomputing Centre (CSCS)

 ASUCA: Full GPU Implementation of Weather Prediction Code on TSUBAME Supercomputer Takayuki Aoki, GSIC of Tokyo Institute of Technology (TiTech)

 NIM: Using GPUs to Run Next-Generation Weather Models Mark Govett, National Oceanic and Atmospheric Administration (NOAA)

 BOF: GPUs and Numerical Weather Prediction (organized by CSCS and NVIDIA) Featured organizations: TiTech (ASUCA), NASA (GEOS-5), NOAA (NIM), Cray, PGI

NVIDIA GPU Technology Conference | Sep 2010 | San Jose, CA

- ASUCA: Full GPU Implementation of Weather Prediction Code on TSUBAME Supercomputer Takayuki Aoki, GSIC of Tokyo Institute of Technology (TiTech) NIM: Using GPUs to Run Next-Generation Weather Models
- Million Mark Govett, National Oceanic and Atmospheric Administration (NOAA) MITgcm: Designing a Geoscience Accelerator Library Accessible from High Level Languages Chris Hill, Massachusetts Institute of Technology (MIT)

PARALLELISATION CONSIDERATIONS

GPU Considerations for CWO Codes

- Initial efforts are mostly implicit linear solvers on GPU
 - If linear solver ~50% of profile time only 2x speed-up is possible
 - More of application must be moved to GPUs for additional benefit
 - Explicit schemes no linear algebra, no solver, operations on stencil
- Most codes are parallel and scale across multiple CPU cores
 - Multi-core CPUs can contribute to parallel matrix assembly, others
- Most codes use a domain decomposition parallel method
 - Fits GPU model very well and preserves costly MPI investment

Options for Parallel Programming of GPUs

Approach	Examples
Applications	MATLAB, Mathematica, LabVIEW
Libraries	FFT, BLAS, SPARSE, RNG, IMSL, CUSP, etc.
Directives	PGI Accelerator, HMPP, Cray, F2C-Acc
Wrappers	PyCUDA, CUDA.NET, jCUDA
Languages	CUDA C/C++, PGI CUDA Fortran, GPU.net
APIs	CUDA C/C++, OpenCL

Most Implementations Focus on Dynamical NVIDIA Core **Application Code Dynamics** Rest of Code GPU CPU Use CUDA to Parallelize

Sparse Iterative Solvers for Dynamics

- Sparse-matrix vector multiply (SpMV) & BLAS1
 - Memory-bound
- GPU can deliver good SpMV performance
 - ~10-20 Gflops for unstructured matrices in double precision
- Best sparse matrix data structure on GPU different from CPU
 - Explore for your specific case

A massively parallel preconditioner is key:

Lectures: Jon Cohen at IMA Workshop: <u>"Thinking parallel: sparse iterative solvers with CUDA"</u> Nathan Bell (4-parts) at PASI: <u>"Iterative methods for sparse linear systems on GPU"</u>

Typical Sparse Matrix Formats CSS Soloron Control of Control of

(ELL) ELL ACA

(DIA) Diggonal

MAR Hubid

COOC Coolingt

Hybrid Sparse Matrix Format for GPUs

- ELL handles typical entries
- COO handles exceptional entries
 - Implemented with segmented reduction

 Some overheads in matrix format conversion, can be hidden if the solver does O(100) of iterations

SpMV Performance for Unstructured Matrices

GPU TECHNOLOGY

Soul of NVIDIA's GPU Roadmap

Increase Performance / Watt

Make Parallel Programming Easier

Run more of the Application on the GPU

Tesla CUDA GPU Roadmap

© NVIDIA Corporation 2011

Project Denver

High Performance ARM Core

NVIDIA-Designed

NVIDIA Announced "Project Denver" Jan 2011

NVIDIA Announces "Project Denver" to Build Custom CPU Cores Based on ARM Architecture, Targeting Personal Computers to Supercomputers

NVIDIA Licenses ARM Architecture to Build Next-Generation Processors That Add a CPU to the GPU

LAS VEGAS, NV -- (Marketwire) -- 01/05/2011 -- CES 2011 -- NVIDIA announced today that it plans to build highperformance ARM® based CPU cores, designed to support future products ranging from personal computers and servers to workstations and supercomputers.

> It's true folks, NVIDIA's building a CPU! Madness! The future just got a lot more exciting.

http://www.engadget.com/2011/01/05/nvidia-announces-project-denver-arm-cpu-for-the-desktop/

An ARM processor coupled with an NVIDIA GPU represents the computing platform of the future. A high-performance CPU with a standard instruction set will run the serial parts of applications and provide compatibility while a highly-parallel, highly-efficient GPU will run the parallel portions of programs.

The result is that future systems - from the thinnest laptops to the biggest data centers, and everything in between - will deliver an outstanding combination of performance and power efficiency.

Posted on Jan 5 2011 at 01:05:16 PM in Mobile VIEW COMMENTS

BY BILL DALLY

"PROJECT DENVER" PROCESSOR TO USHER IN NEW ERA OF COMPUTING

ARM

CUDA 4.0: Big Leap In Usability

CUDA 4.0 Parallel Programming Made Easy

Ease of Use

> CUDA 1.0 Program GPUs using C, Libraries

CUDA 2.0 Debugging, Profiling, Double Precision **CUDA 3.0** Fermi, New Libraries, Big Perf. Boost

Performance

NVIDIA GPUDirect[™]: *Eliminating CPU Overhead*

Accelerated Communication with Network and Storage Devices

Peer-to-Peer Communication Between GPUs

- Direct access to CUDA memory for 3rd party devices
- Eliminates unnecessary memory copies & CPU overhead
- Supported by Mellanox and Qlogic

Supported since CUDA 3.1

- Peer-to-Peer memory access, transfers & synchronization
- Less code, higher programmer productivity

New in CUDA 4.0

MPI Integration of NVIDIA GPUDirect™

- MPI libraries with support for NVIDIA GPUDirect and Unified Virtual Addressing (UVA) enables:
 - MPI transfer primitives copy data directly to/from GPU memory
 - MPI library can differentiate between device memory and host memory without any hints from the user
 - Programmer productivity: less application code for data transfers

Code without MPI integration

At Sender:

cudaMemcpy(s_buf, s_device, size, cudaMemcpyDeviceToHost); MPI_Send(s_buf, size, MPI_CHAR, 1, 1, MPI_COMM_WORLD);

At Receiver:

MPI_Recv(r_buf, size, MPI_CHAR, 0, 1, MPI_COMM_WORLD, &req); cudaMemcpy(r_device, r_buf, size, cudaMemcpyHostToDevice);

Code with MPI integration

At Sender:

MPI_Send(s_device, size, ...);

At Receiver:

MPI_Recv(r_device, size, ...);

- Transfer data directly to/from CUDA device memory via MPI calls
- Code is currently available in the Open MPI trunk, available at:
 - http://www.open-mpi.org/nightly/trunk (contributed by NVIDIA)

More details in the Open MPI FAQ

- Features: <u>http://www.open-mpi.org/faq/?category=running#mpi-cuda-support</u>
- Build Instructions: <u>http://www.open-mpi.org/faq/?category=building#build-cuda</u>

MVAPICH2-GPU

Upcoming MVAPICH2 support for GPU-GPU communication with

Memory detection and overlap CUDA copy and RDMA transfer

With GPUDirect

- 45% improvement compared to Memcpy+Send (4MB)
- 24% improvement compared to MemcpyAsync+Isend (4MB) Without GPUDirect
- 38% improvement compared to Memcpy+send (4MB)
- 33% improvement compared to MemcpyAsync+Isend (4MB)

Measurements from:

H. Wang, S. Potluri, M. Luo, A. Singh, S. Sur and D. K. Panda, "MVAPICH2-GPU: Optimized GPU to GPU communication for InfiniBand Clusters", Int'l Supercomputing Conference 2011 (ISC), Hamburg <a href="http://www.http://wwwww.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.htttp://wwwwwwww.http://www.http://wwwww.http://www

One-sided Communication

With GPUDirect

- 45% improvement compared to Memcpy+Put Without GPUDirect
- 39% improvement compared with Memcpy+Put Similar improvement for Get operation Major improvement in programming

http://mvapich.cse.ohio-state.edu/

GPUDirect: Further Information

- http://developer.nvidia.com/gpudirect
 - More details including supported configurations
 - Instructions
 - System design guidelines
- Also talk to NVIDIA Solution Architects

QUESTIONS