Status of RADVOP – Efficient radar forward operator for data assimilation and model verification

Dorit Epperlein1, Yuefei Zeng1, Ulrich Blahak2, Daniel Leuenberger3

1Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT)
2German Weather Service
3MeteoSwiss

COSMO General Meeting, Rome, 05.09.2011
Motivation

- Possible enhancement of the short-range precipitation forecast by
 a) assimilation of radar data
 b) microphysics enhancements derived from comparisons of model results with radar data

- DWD:

 Up to now: latent heat nudging and simple nudging of radial winds. Future: ETKF assimilation system based on COSMO-DE-EPS. For assimilation of radar data so-called „forward operator“ necessary (simulation of radar quantities on the basis of model results on the native radar grid: radial winds, reflectivity, polarisation parameters).

- Such a forward operator also helpful for comparisons of model results and radar directly in terms of radar measurables - much easier than instead trying to derive model quantities like 3D wind, precipitation and hydrometeor contents from radar data.

- Project within the Extramural Research Program.

- Requirement: parallel / vectorized operator, integrated in COSMO code
Principle of radar measurement

Intensity $I \sim \frac{1}{r^2 \ell}$
Principle of radar measurement

$N(D, \vec{r}, t)$, concept of "spectral number density" of hydrometeors (number per size interval per volume)

\Rightarrow field functions:

$\eta = \int_0^{\infty} \sigma_b(D) N(D) dD$
$\Lambda = \int_0^{\infty} \sigma_{ext}(D) N(D) dD$

$\sim Z_e$
useful for atten. (assumption: incoherent single scattering)
Principle of radar measurement

$N(D, \vec{r}, t)$, concept of „spectral number density“ of hydrometeors (number per size interval per volume)

\Rightarrow field functions:

$\eta = \int_0^\infty \sigma_b(D) N(D) dD$ $\Lambda = \int_0^\infty \sigma_{ext}(D) N(D) dD$

$\sim Z_e$ useful for atten. (assumption: incoherent single scattering)
Principle of radar measurement

Meßzeit ≈ 10 min

≈ 100 km

$\sim Z_e$ useful for atten. (assumption: incoherent single scattering)

Intensity $I \sim \frac{1}{r^2 \ell}$
Atmospheric ray propagation

From Fermat's principle:

\[t = \frac{1}{c} \int_{R}^{P} n'(h(s)) dl = \min \Rightarrow \delta t = 0 \]

calculate \(h(s) \) by solving the Euler-Lagrange equation:

\[
\frac{d^2 h}{ds^2} - \left(\frac{1}{n' dh} + \frac{2}{a_e + h} \right) \left(\frac{dh}{ds} \right)^2 - \left(\frac{a_e + h}{a_e} \right)^2 \left(\frac{1}{n' dh} + \frac{1}{a_e + h} \right) = 0
\]

or by making use of its conserved integral:

\[n' (h + a_e) \cos(\epsilon_{loc}) = \text{const.} \]

where \(\epsilon_{loc} = \arctan \left(\frac{dh}{dx} \right) = \arctan \left(\frac{a_e}{a_e + h} \frac{dh}{ds} \right) \)
Atmospheric ray propagation

Ray of radiation

\[n' = \text{refr. index} = fct(p, T, e) \]

From Fermat's principle:

\[t = \frac{1}{c} \int_{R}^{P} n'(h(s)) \, dl = \min \Leftrightarrow \delta t = 0 \]

calculate \(h(s) \) by solving the Euler-Lagrange equation:

\[
\frac{d^2h}{ds^2} - \left(\frac{1}{n' \, dh} + \frac{2}{a_e + h} \right) \left(\frac{dh}{ds} \right)^2 - \left(\frac{a_e + h}{a_e} \right)^2 \left(\frac{1}{n' \, dh} + \frac{1}{a_e + h} \right) = 0
\]

or by making use of its conserved integral:

\[n' \left(h + a_e \right) \cos(\epsilon_{loc}) = \text{const.} \]

where \(\epsilon_{loc} = \arctan \left(\frac{dh}{dx} \right) = \arctan \left(\frac{a_e}{a_e + h} \frac{dh}{ds} \right) \)
Radar operator (reflectivity)

\[
f^2(\phi, \theta) = \exp\left(-4 \ln 2 \left(\frac{\phi^2}{\phi_3^2} + \frac{\theta^2}{\theta_3^2}\right)\right)
\]

\[
\eta(r, \phi, \theta) = \int_0^\infty \sigma_b(D) N(D, r, \phi, \theta) dD
\]

\[
Z_e = \eta \frac{\lambda_0^4}{\pi^5 |K_w|^2}
\]

\[
\langle Z_e^{(R)} \rangle = \frac{\int_{r_0-\Delta r/2}^{r_0+\Delta r/2} \int_{-\pi/2}^{\pi/2} \int_{-\pi}^{\pi} Z_e(r, \phi, \theta) \exp\left(-2 \int_0^r \int_0^\infty \sigma_{\text{ext}}(D) N(D, r', \phi, \theta) dD dD' \right) \frac{f(\phi, \theta)^4}{r^2} \cos \theta d\theta d\phi dr}{\int_{r_0-\Delta r/2}^{r_0+\Delta r/2} \int_{-\pi/2}^{\pi/2} \int_{-\pi}^{\pi} \frac{f(\phi, \theta)^4}{r^2} \cos \theta d\theta d\phi dr}
\]
Radar operator (reflectivity)

\[
f^2(\phi, \theta) = \exp \left(-4 \ln 2 \left(\frac{\phi^2}{\phi^2_3} + \frac{\theta^2}{\theta^2_3} \right) \right)
\]

\[
\eta(r, \phi, \theta) = \int_0^\infty \sigma_b(D) N(D, r, \phi, \theta) \, dD
\]

\[
Z_e = \eta \frac{\lambda_0^4}{\pi^5 |K_w|^2}
\]

Simplification 1:

\[
\left\langle Z_e^{(R)} \right\rangle = \frac{\int_{\pi/2}^{\pi/2} Z_e(r_0, 0, \theta) \exp \left(-2 \int_0^{r_0} \int_0^\infty \sigma_{ext}(D) N(D, r', \theta) \, dD \, dr' \right) f(0, \theta)^4 \, d\theta}{\int_{-\pi/2}^{\pi/2} f(0, \theta)^4 \, d\theta}
\]
Radar operator (reflectivity)

Simplification 2:

\[
\langle Z_e^{(R)} \rangle = Z_e(r_0, 0, 0) \exp \left(-2 \int_0^{r_0} \int_0^\infty \sigma_{ext}(D) N(D, r') dD dr' \right)
\]

\[
f^2(\phi, \theta) = \exp \left(-4 \ln 2 \left(\frac{\phi^2}{\phi_3^2} + \frac{\theta^2}{\theta_3^2} \right) \right)
\]

\[
\eta(r, \phi, \theta) = \int_0^\infty \sigma_b(D) N(D, r, \phi, \theta) dD
\]

\[
Z_e = \eta \frac{\lambda_0^4}{\pi^5 |K_w|^2}
\]

\[
k_2 = \frac{20}{\ln 10} \Lambda
\]
Approximations for Z_e

In general: Mie-scattering (one- or two-layered spheres):

$$\sigma_{\text{back}} = f(D,m) \ , \ m = \text{refract. index hydrometeors}$$

(ice/water/air-mixtures)

$$\sigma_{\text{ext}} = f(D,m)$$

Approximations:

Rayleigh:

$$\sigma_{\text{back}} \sim D^6$$

→ **water drops:** $Z_e \sim M_6$ (analytic for gamma size distr.)

→ **ice hydrom.:** m variable, still need to integrate over $N(D)$

→ **small dry ice hydrom.:** Rayleigh + Debye-approx. for m:

$$Z_e \sim \rho^2_{\text{snow}}(D) \ M_6$$
Radial wind operator and simplif.

\[\langle v_r^{(R)} \rangle = \frac{\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi/2} \int_{-\pi/2}^{\pi/2} (\hat{v} \cdot \hat{e}_r) \frac{n f^4}{r^2} \cos(\theta) \ d\theta \ d\phi \ dr}{\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi/2} \int_{-\pi/2}^{\pi/2} \frac{n f^4}{r^2} \cos(\theta) \ d\theta \ d\phi \ dr} - \frac{\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi/2} \int_{-\pi/2}^{\pi/2} (\hat{e}_3 \cdot \hat{e}_r) \bar{v}_T \frac{n f^4}{r^2} \cos(\theta) \ d\theta \ d\phi \ dr}{\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi/2} \int_{-\pi/2}^{\pi/2} \frac{n f^4}{r^2} \cos(\theta) \ d\theta \ d\phi \ dr} \]

With:

\[\bar{v}_T = \frac{\int_{0}^{\infty} \sigma_b(D) N(D) v_T(D) dD}{\eta} \]

Refl.-weighted hydrom. fall speed (computed from model variables or somehow approximated)

\[l_n^{-2} = \exp \left(-2 \int_{0}^{r} \Lambda(r') \ dr' \right) \]

Attenuation factor
Radial wind operator and simplif.

\[\langle V_r^{(R)} \rangle = \frac{\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} (v_r \cdot \mathbf{e}_r) \frac{n}{l_n^2} \frac{f^4}{r^2} \cos(\theta) \, d\theta \, d\phi \, dr}{\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} \frac{n}{l_n^2} \frac{f^4}{r^2} \cos(\theta) \, d\theta \, d\phi \, dr} - \frac{\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} (e_3 \cdot \mathbf{e}_r) \overline{v}_T \frac{n}{l_n^2} \frac{f^4}{r^2} \cos(\theta) \, d\theta \, d\phi \, dr}{\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} \frac{n}{l_n^2} \frac{f^4}{r^2} \cos(\theta) \, d\theta \, d\phi \, dr} \]

Simplifications (examples):

- Only vertical smoothing:

\[\langle V_r^{(R)} \rangle = \frac{\int_{-\pi/2}^{\pi/2} (v_r \cdot \mathbf{e}_r) \frac{n}{l_n} f^4(0, \theta) \cos(\theta) \, d\theta}{\int_{-\pi/2}^{\pi/2} f^4(0, \theta) \cos(\theta) \, d\theta} - \frac{\int_{-\pi/2}^{\pi/2} (e_3 \cdot \mathbf{e}_r) \overline{v}_T \frac{n}{l_n} f^4(0, \theta) \cos(\theta) \, d\theta}{\int_{-\pi/2}^{\pi/2} f^4(0, \theta) \cos(\theta) \, d\theta} \]

- + No reflectivity weighting:

\[\langle V_r^{(R)} \rangle = \frac{\int_{-\pi/2}^{\pi/2} (v_r \cdot \mathbf{e}_r) f^4(0, \theta) \cos(\theta) \, d\theta}{\int_{-\pi/2}^{\pi/2} f^4(0, \theta) \cos(\theta) \, d\theta} - \frac{\int_{-\pi/2}^{\pi/2} (e_3 \cdot \mathbf{e}_r) \overline{v}_T f^4(0, \theta) \cos(\theta) \, d\theta}{\int_{-\pi/2}^{\pi/2} f^4(0, \theta) \cos(\theta) \, d\theta} \]

- + No hydrometeor fall speed:

\[\langle V_r^{(R)} \rangle = \frac{\int_{-\pi/2}^{\pi/2} (v_r \cdot \mathbf{e}_r) f^4(0, \theta) \cos(\theta) \, d\theta}{\int_{-\pi/2}^{\pi/2} f^4(0, \theta) \cos(\theta) \, d\theta} - \frac{\int_{-\pi/2}^{\pi/2} (e_3 \cdot \mathbf{e}_r) \overline{v}_T f^4(0, \theta) \cos(\theta) \, d\theta}{\int_{-\pi/2}^{\pi/2} f^4(0, \theta) \cos(\theta) \, d\theta} \]

- + No smoothing, but with fall speed:

\[\langle V_r^{(R)} \rangle = \mathbf{v} \cdot \mathbf{e}_r + \overline{v}_T \mathbf{e}_3 \cdot \mathbf{e}_r \]
Block diagram and status

Calculate values on the model grid for:
- radar reflectivity
- extinction coefficient
- 3d wind components
- polarisation parameters
- aver. fall speed of hydrometeors

- Horizontal interpolation on "azimuthal slices"
 + Spread "azimuthal slices" evenly over all PE's

- Calculate propagation of radar beam, choose from:
 - constant (4/3 earth model)
 - variable (depending on refractive index)

- Attenuation of radar reflectivity (extinction coefficient) by atmospheric gases and hydrometeors

- Vertical interpolation of values from model grid onto the single radar (sub)beams

- Shading of radar beam at orographic obstacles (yes or no)

- Calculation of radial wind from 3D wind components on radar beam
 - consideration of fall velocities of hydrometeors
 - (atten.) reflectivity weighting

- Beam weighting function: weighted spatial mean over measuring spatial volume (cross-beam vertically and/or horizontally)

- Output of "simulated" radar data to a file:
 - in bin/ascii format
 - in NetCDF format
Results idealized convection 1 km

Radial wind

4/3 earth, no smoothing

4/3 earth, vertical smoothing
Results idealized convection 1 km

Radial wind

Online propag., no smoothing

Online propag., vertical smoothing
Results idealized convection 1 km

Radial wind

Online propag., no smoothing

Online propag., vertical smoothing

Difference to 4/3 earth much too large for this case (nearly „standard“ propagation conditions)!
After code revision and some bug corrections it is now better.
Results idealized convection 1 km

Reflectivity @ wavelength 5.5 cm

Simple Rayleigh approx. no attenuation

Mie scattering + attenuation
Results idealized convection 1 km

Reflectivity @ wavelength 3.0 cm

Simple Rayleigh approx. no attenuation

Mie scattering + attenuation
Efficiency @ 1 km resol.

(version with online propag. calculations)

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Without space averaging</th>
<th>With space averaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>calc_geometry_grid</td>
<td>97.63% 0.019s (≈ 0.0%)</td>
<td>97.63% 0.019s (≈ 0.0%)</td>
</tr>
<tr>
<td>calc_grd_rfridx</td>
<td>99.91% 0.229s (≈ 0.0%)</td>
<td>99.91% 0.219s (≈ 0.0%)</td>
</tr>
<tr>
<td>calc_grd_winduvw</td>
<td>99.78% 0.374s (≈ 0.0%)</td>
<td>99.78% 0.376s (≈ 0.0%)</td>
</tr>
<tr>
<td>calc_grd_reflectivity</td>
<td>99.34% 0.330s (≈ 0.0%)</td>
<td>99.34% 0.326s (≈ 0.0%)</td>
</tr>
<tr>
<td>calc_geometry_online</td>
<td>85.39% 8.539s (≈ 0.2%)</td>
<td>84.30% 48.89s (≈ 1.1%)</td>
</tr>
<tr>
<td>calc_mod_radialwind_online</td>
<td>99.58% 0.461s (≈ 0.0%)</td>
<td>99.81% 1.771s (≈ 0.1%)</td>
</tr>
<tr>
<td>calc_mod_reflectivity_online</td>
<td>99.60% 0.221s (≈ 0.0%)</td>
<td>99.81% 0.801s (≈ 0.0%)</td>
</tr>
<tr>
<td>output_radar</td>
<td>91.29% 3.512s (≈ 0.1%)</td>
<td>97.58% 6.063s (≈ 0.1%)</td>
</tr>
<tr>
<td>communication expenses</td>
<td>> 1319s (≈ 30.6%)</td>
<td>> 1281s (≈ 30.2%)</td>
</tr>
<tr>
<td>total CPU time</td>
<td>4217.903s</td>
<td>4243.724s</td>
</tr>
</tbody>
</table>

actual Ze-calc. (Mie-scattering) is done elsewhere and hides in the „communication expenses“ (load imbalance)!
Efficiency @ 1 km resol.

For both online propag. and 4/3 earth model:

- Communication amount for online propag. higher, but not so critical (might be different for 2.8 km !)

- „Bottleneck“: Mie-scattering in combination with load imbalance causes long „waiting times“ for idle processors

In consequence:

- Optimization of the scattering parameter calculations on the model grid necessary.
 Easiest way: (regular) lookup tables, computed only once at model start, (multi-)linear table interpolation.
 First: reflectivity lookup tables, later similar concept for polarisation parameters.
Weitergehende Fragestellungen

- Wie kann man Modellverifikation mittels 3D Radardaten betreiben? Was kann man gewinnen?

- Assimilation von Radardaten: wie reagiert das Modell auf die Assimilation solcher Massendaten? Wo liegen die Probleme? Was kann man gewinnen?

- Abschätzung von Effekten der nichtgleichmäßigen Strahlfüllung auf Dämpfung (k2-Ze-Beziehung).
Radial wind operator

\[\langle v_r^{(R)} \rangle = \left(\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} \left(\int_0^{\infty} \sigma_b(D) N(D, r, \phi, \theta) \left[(\vec{v} - v_T(D) \vec{e}_3) \cdot \vec{e}_r \right] dD \right) \frac{f(\phi, \theta)^4}{r^2} \cos \theta d\theta d\phi dr \right) \]

\[\left(\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} \eta(r, \phi, \theta) \frac{f(\phi, \theta)^4}{r^2} \cos \theta d\theta d\phi dr \right) \]

\[= \left(\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} (\vec{v} \cdot \vec{e}_r) \frac{\eta}{I_n^2} \frac{f^4}{r^2} \cos(\theta) d\theta d\phi dr \right) \]

\[- \left(\int_{r_0 - \Delta r/2}^{r_0 + \Delta r/2} \int_{-\pi}^{\pi} \int_{-\pi/2}^{\pi/2} (\vec{v}_r \cdot \vec{e}_r) \int_0^{\infty} \sigma_b(D) N(D) v_T(D) dD \frac{1}{I_n^2} \frac{f^4}{r^2} \cos(\theta) d\theta d\phi dr \right) \]
Aufzählung
- asdfasdf
- asfdasdf

Zweiter Punkt
- asdfasdf
- asdasdf