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Introduction. Model-error modelling approaches

1 Fully ad hoc

I Covariance inflation
I Multi-model
I Multi-parametrization
I Perturbed physical parameters
I Stochastic physics (multiplicative ME perturbations)
I Additive ME perturbations

2 Partly ad hoc
I Stochastic kinetic energy backscatter
I Stochastic physical parametrizations
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General setup

1 Fix the model-error model (MEM): a mixed

multiplicative-additive model

2 Develop an objective MEM Estimator using real forecast and

observation data

3 Build a ME Generator and embed it into the COSMO code

4 Build a MEM Validator using the OSSE methodology: apply the

Estimator to the simulated data generated with the known MEM

5 Using the Validator’s results, adjust/calibrate the Estimator
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Model error: definition

dXm

dt
= F (Xm)

dX t

dt
= F (X t)− 𝜀

𝜀 = F (X t)− dX t

dt
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Estimation methodology in general terms

𝜀 = F (X t)− dX t

dt

1 The first term on the r.h.s. can be assessed using model forecast

tendencies F (Xm) — up to the difference 𝛿F = F (Xm)− F (X t).

2 The second term on the r.h.s. can be assessed using observations

at isolated observation points — up to observation errors.
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The model-error model

𝜀 = b + 𝜇 · F (X t) + 𝜀a

𝜀 = b + 𝜇 · Fp(X t) + 𝜀a

(The bias b proves to be nearly zero. Fp is the ‘physical’ tendency.)

Model-error-model parameters to be estimated:

𝜃 = (E𝜇, D𝜇, D𝜀a)
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The estimator

The maximum likelihood technique:

lik(𝜃) := p(y ; 𝜃)

y := (d , fp)

d := f −m

𝜃 = argmax
𝜃

L(𝜃)
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A cross-section of the log-likelihood function (for the full

tendency F )
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Bootstrap tests (full tendency)

Sample size: corresponds to a 3-month archive of real data for COSMO-RU.

𝜃 :
√
D𝜇 E𝜇

√
D𝜀a

“Truth” 0.32 0.20 0.63

Experiment 1 0.33 0.19 0.61

Experiment 2 0.32 0.19 0.66

Experiment 3 0.31 0.20 0.63

M Tsyrulnikov and V Gorin (HMC) Objective model error estimation, modelling, and simulation. First results with COSMORome, 5 Sep 2011 8 / 25



Data

COSMO-RU 14 km.

Radiosonde temperature and wind observations.

12-h tendencies.

A 3-month data archive is used.

At each level, for each field, we have about 100 observed

tendencies per day over the COSMO-RU area.
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COSMO-RU results. Checking Guassianity of F (Xm) (full

tendency)

The estimator appeared to be robust to non-Gaussianity of this kind.

The true tendency was specified (using a Gaussian mixture) to have

the same leptokurtic non-Gaussian behaviour (with the same excess

kurtosis as observed for the forecast tendency).
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Extrapolation to zero 𝛿F

As a proxy to

𝛿Fm ≡ 𝛿 = F (Xm)− F (X t).

we use

𝛿a = F (Xm)− F (X a) ≡ [F (Xm)− F (X t)]− [F (X a)− F (X t)].

Both 𝛿 and 𝛿a represent error growth, which is significantly faster if

the forecast is started from a forecast state than from an analysis

(due to the “breeding errors” effect).

If, in addition, X a is substantially more accurate than Xm, then we

have the two reasons to neglect the F (X a)− F (X t) term and, thus,

use 𝛿a instead of unknown 𝛿.

Then, we extrapolate the estimates to 𝛿a = 0.
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Dependence of the estimates on the st. dev. of

𝛿F = F (Xm)− F (X t) (full tendency)
T-700
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Mean and st. dev. of the multiplier mu (full tendency)
Temperature

𝜀 = (E𝜇+
∘
𝜇) · F + 𝜀a
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The MEM Validator: methodology

1 Generate the ‘truth’ with the known MEM.

2 Simulate the ‘observations’: the ‘truth’ plus obs err.

3 Develop a simplified analysis and run the ‘assimilation suite’ with

the unperturbed COSMO and simulated observations.

4 Run 2-day forecasts from the ‘analyses’.

5 Apply the Estimator to the simulated both forecast and

observational data.

6 Compare the estimated ME parameters with those specified by

the generation of the ‘truth’.

The systematic differences, if not too large, can be used to

correct the real-world estimates.

M Tsyrulnikov and V Gorin (HMC) Objective model error estimation, modelling, and simulation. First results with COSMORome, 5 Sep 2011 14 / 25



The MEM Validator: the ‘truth’

Fix the boundary conditions and run COSMO with the MEG switched

on (for, say, one month). The additive ME is dropped here:

dX t

dt
= F (X t)− (E𝜇−

∘
𝜇) · Fp(X

t)

The resulting ‘long-range’ forecast will serve as (a realization of) the

simulated truth.

The resulting ‘truth’ can be compared with:

(1) the control long-range forecast (downscaled LBC)

(2) the real-world COSMO (GME) analyses
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The simulated ‘truth’ minus the control fcst (T700,day 5)
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The control fcst minus the real-world analysis (T700,day 5)
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The MEM Validator: the ‘analysis’

The goal: build a ‘toy analysis’.

The solution: specify a diagonal gain matrix K .

This can be justified if

(i) All degrees of freedom are observed: H = I

(ii) R ∝ B .

So, we try to specify R with spatial obs-err correlations similar to

those for B .

Then, the analysis reduces to point-wise corrections:

K = B(B + R)−1 =
B

B + R
=

1

1 + r/b
· I ≡ w · I

X a
ijke = X f

ijke + w(ke) · (X o
ijke − X f

ijke)
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The MEM Validator: the ‘observations’

The ‘observations’ are the ‘truth’ plus the noise.

The noise is specified as follows.

Independent Gaussian pseudo-random variables are assigned to

points of a sparse (5× 5× 3 thinned) 3-D grid. So, on the sparse

grid we have the white noise.

The tri-linear interpolation is performed from the sparse to the

real COSMO grid. The spatial correlations emerge on the length

scales of the sparse-grid mesh sizes, but some inhomogeneity

arises.

Several sweeps of a 5× 5× 3 running smoother are performed to

homogenize and further increase the spatial scales of the noise –

so that R become closer to B .
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The observational noise (hor)
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The observational noise (vert)
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The MEM Validator: the ‘assimilation suite’

The classical ‘analysis-forecast’ suite is built with the cycling

frequency of 6 h.

FG-error and analysis-error rms statistics (level 20, asml day 30):

T (K) U (m/s) V (m/s)

FG minus ‘truth’ 0.8 3.2 2.8

Anls minus ‘truth’ 0.6 1.9 1.6

Free fcst minus ‘truth’ 3 8 9.5
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Reproducibility of the MEM parameters

Is the ‘output’ 𝜃 close to the ‘input’ (specified or postulated) 𝜃?

Not yet...
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Conclusions

A new maximum likelihood based approach to the estimation of

the mixed multiplicative-additive ME model is suggested and

tested (using bootstrap).

The developed Estimator is applied to COSMO-RU-14 forecast

data.

The ME Generator is developed and built into the COSMO code.

The MEM Validator is developed: specify the ‘true’ ME, produce

(by running COSMO with MEG) the ‘truth’, define noisy

‘observations’, mimic the assimilation suite, mimic the 6 to 48-h.

free forecasts (the 12-h. tendencies from which are used as input

to the Estimator), and try to restore the MEM parameter with

the Estimator.

The reproducibility of the MEM parameters is not yet established.
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Issues and further steps

There is an inconsistency in the setup: MEM is estimated using accumulated

physical tendencies, whereas MEG acts on simultaneous (80-sec.) tendencies.

Tentative remedy: multiply 𝜇 by a moving-accumulated physical tendency,

with the accumulation time scale to be identified experimentally (1 h can be

a starting point).

Introduce spatial (not just temporal) averaging of physical tendencies: the

model error need not be maximal at exactly the same place where the

forecast tendency is maximal, it can be maximal somewhere nearby

(normally, the forecast fails to exactly locate a feature like front or

convective system).

Turn to spatial, multivariate, and spatio-temporal estimation of the 𝜇 and 𝜀a
random fields—and, correspondingly, upgrade the MEG.

Another possible approach: make use of ‘perfect parametrization’ schemes (if

available): on the forecast trajectory, compute 1-time-step ‘perfect tendencies’ and

confront them with the COSMO ones.

This approach can result in different 𝜇 for different parametrizations.
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