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Example Setup

3dVar

1) Setup a simple example system with a
travelling "quadratic” front

2) Dynamics is a shift operator to the
right Dynamics is called

M o —> Pk+1
3) Measurement points indicated by

white "+, either widely distributed or
with some measurement free area
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Discretization, Dynamics and Measurement Operator

4) Vectors  or @y at time t in X = RN
describe the field values in a regular

grid.

5) Measurement Operator H selects the
measurements, next neightbor

interpolation.

6) Measurement vector f, time
dependence: f; at time
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Tikhonov Regularization and 3dVar
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Let H be the data operator mapping the state ¢ onto the measurements f.
Then we need to find ¢ by solving the equation

Hp =f (1)
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Basic Approach

Let H be the data operator mapping the state ¢ onto the measurements f.
Then we need to find ¢ by solving the equation

Hp = f (1)
When we have some initial guess go(b), we transform the equation into
H(p — ™) = £ — H) @
with the incremental form

0 = + H(f — He®)). 3)

8/37
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Consider an equation
Hp =f

where H~" is unstable or unbounded.

Hp =f
= H'Hp = H*f
= (al+ H'H)p = H'f.

where (a/ + H*H) has a stable inverse!
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Regularization 1

Consider an equation
Hp =f

where H~" is unstable or unbounded.

Hp =f
= H'Hp = H'f
= (al+ H"H)p = H*f.

where (a/ + H*H) has a stable inverse!
Tikhonov Regularization: Replace H™ ' by the stable version
Ry = (ol + H*H)'H*

with regularization parameter ov > 0.
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Tikhonov regularization is equivalent to the minimization of

J) = (allell® + e — 11
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J) = (allell® + e — 11 )

The normal equations are obtained from first order optimality conditions

Vg = 0. (8)
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Regularization 2: Least Squares

Tikhonov regularization is equivalent to the minimization of
J) = (allell® + e — 11

The normal equations are obtained from first order optimality conditions
Vol = 0.
Differentiation leads to
0 = 2ap + 2H*(Hp — f)
= 0= (al+ H'H)p — H'f,
which is our well-known Tikhonov equation

(al + H*H)p = H*f.
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Covariances and Weighted Norms

Usually, the relation between variables at different points is incorporated by
using covariances / weighted norms:

J(x) = (lle = o3 + l1Hp — 1113 (10

The update formula is now
Y= So(b) + (B_1 + H*R_1H)_1H*R_1(f - HSD(b)) (11)

or
o = ) + BH* (R + HBH*) ™' (f — He®). (12)
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How to Update B in KF

Kalman Update Formula for the covariance matrix B (with R error covariance
matrix)

BD)7 = (B) T HHRH, k=12.. (3
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How to Update B in KF

Kalman Update Formula for the covariance matrix B (with R error covariance
matrix)

BD)7 = (B) T HHRH, k=12.. (3
and for the mean
i = o + B (HEE 4+ R (e — ) (1)

for k=1,2,...with B,((t_& being the propagated covariance matrix from B,((a).
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How to Update B in KF

Kalman Update Formula for the covariance matrix B (with R error covariance
matrix)

B = (BO) A HAH k=12.. (93
and for the mean
i = o + B (HEE 4+ R (e — ) (1)

for k=1,2,...with B,((i)1 being the propagated covariance matrix from B,((a).

Theorem

For linear systems and linear observation operators 4dVar and the Kalman
Filter are equivalent.
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Ensemble Kalman Filter (EnKF) and Local Ensemble Kalman Filter
(LEnKF)
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EnKF: B via Ensemble of states

Use stochastic estimator

8=E{(¢ -9 -7} (19

space X

time t
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e Updates are

ok = o + BH* (R + HBH) ™ (f — Hp™)
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e The stochastic estimator is given by

(1) _ = (- _ 1 T
o= (¢ -7 . -7),  B=_——aq ()
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EnKF Analysis 1

e Updates are
o = @\ + BH* (R + HBH") (1 — Hp")

e The stochastic estimator is given by

1
L—1

a=(¢" -5 ..¢¥-9), B=——aal w9

e We solve the 3dVar update in the low-dimensional subspace

X,SL) = span{(pm — By ey o) —¢} (17)

by
o =9 + QG H' (R + HAQEH) ™' (1 — Hpl)

~
regularized projection
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The minimizer of the data term only

Do O
true,k "k u,(fg = Pk(‘Ptrue,k - (10!((b))

is given by an orthogonal projection.
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Tikhonov Regulari;

@

(b)
¢true,k-¢k

The minimizer of the data term only

UIE?(? = Pk(@true,k - (10!(<b))

is given by an orthogonal projection.
The minimizer u,((a) in X,SL) of

— 12 o0y 2
J(u) = Nullg—+(f = He ") — Hull-

(a)

is on the line between vy g and u = 0'in

xb.
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Error estimates for EnKF

Assume that H is injective, that we study true data fy and consider the EnKF
with data term only. Then, the error Ey o in the k-th step of the EnKF is given by

Eko = dH*R_1H(X,EL), Ptrue,k — So(b))-
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Error estimates for EnKF

Assume that H is injective, that we study true data fy and consider the EnKF
with data term only. Then, the error Ey o in the k-th step of the EnKF is given by

Exo = dH*R-‘H(X;EL)a Ptrue,k — So(b))

Assume that H is injective and that we study true data fx. Then, the error Ey in
the k-th step of the EnKF is estimated by

”‘Ptrue,k - Qp(b)HH*Ff—‘H Z Ek Z dH*R“H(XISL)a Sotrue,k - So(b))
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e We employ localization:

Pk = 801(<b) + B/ocH*(R + HB/ocH*)_1(fk - H901(<b))

19/37



Tikhonov Regulari;

@

LEnKF Basic Idea: Localization

e We employ localization:
Pk = 90/(<b) + BocH* (R + HB/ocH*)_1(fk - Hgo,((b))
e Here, the localization is given by
Boc = CoB (18)
(where o denotes the Schur product, i.e. pointwise matrix multiplication)

with
i 2
Cix 1= e PP/o i k=1, N.
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LEnKF Basic Idea: Localization

e We employ localization:
Pk = 90/(<b) + BocH* (R + HB/ocH*)_1(fk - Hgo,((b))
e Here, the localization is given by
Boc = CoB (18)
(where o denotes the Schur product, i.e. pointwise matrix multiplication)

with
L 2
Cix 1= e PP/o i k=1, N.

e There are different alternative ways how to carry out localization!!
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Examples for 3dVar, EnKF and LETKF
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Current work points / scientific and operational questions

1. What type of localization is optimal for our systems?
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Current work points / scientific and operational questions

1. What type of localization is optimal for our systems?

2. Adaptive localization depending on the data density?

3. Dynamics and update rates, how to choose them?

4. Convection resolving scale and localization strategies?

5. Basic conceptional and convergence questions are unresolved!

6. How to estimate and include model error

7. Localization and nonlocal remote sensing data?
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Ensemble Control ...

Control the ensemble
to optimally shape X,SL) locally ...!
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