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Introduction

. The Kalman filter is one of the most popular appheado solving
problems of data assimilation.

. The so-called ensemble approach is a leading methbd use of
Kalman filter data assimilation. It allows one toatdate the
estimation error covariance matrices for nonlineagpostic
models.

. In the report, an efficient algorithm of obsergatl data
assimilation for nonlinear models with an ensembl®Ecasts is
proposed to evaluate the estimation error covariafitesmethod
IS based on ideas taken from automatic control theory

. The ensemble Kalman filter, much like the convardid<alman
filter, i1s an algorithm difficult to implement tegltally, since it
Involves operations with high-order matrices.



Introduction

5. The operation count for the ensemfil@lgorithm is near that
for the Local Ensemble Transform Kalman Filter (LETKF
(Hunt et al., 2007; Szunyogh et al., 2008). Howethez,
ensemblart-algorithm formulas are different from LETKF
formulas and obtained in a different way.

6. The ensemble Kalman filter differs greatly frora ttlassical
Kalman filter in that the forecast error covariances a
estimated by deviations of the ensemble elements freanm
values. The algorithm proposed in this report canxbeneed
to estimate the covariances by deviations of the ensemb
elements from “true” values.



Plan of report

The ensembla—algorithm formulas for nonlinear model and
data operators.

An extension of the ensembtealgorithm in which the
covariance matrices are estimated by an ensemialeab
(deviations of the ensemble elements from “truetiea).

A comparative analysis of the ensemiralgorithm and
LETKF formulas.

The results of numerical experiments on moded dat
assimilation with the 1D Burgers equation.

Conclusions.
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The ensemblaer—algorithm

Let’s
x' (t.,,) is the vector of predicted quantities at tinﬁgﬂ
x*(t) is the vector of values obtained after the analysis at timetk

M is the model operator

n(t,) is Gaussian white noise with covariance mat@(k

The forecast step can be written as

X' (t.1) =M(X(t, ) +n(t,)



The ensemblar—algorithm

The analysis step is
X*(t) =x"(t) +PSH 'Ry} —HX (1)),

P! s the co variance matrix of analysis errors,

R, Is the covariance matrix of observation errors,
H is an operator (generally nonlinear) which transfovaisies at grid nodes
to values at observation points,

H is alinearized operator

y?k IS the observation vector at timetk



The ensemblar—algorithm

Write the algorithm in the following equivalent for

X(tir) = M(X(t)) +n(t) + P H R (Y —H(M (x(t)) +n(t))),

where : - .,
I:)k+1 = (I - KH)Pk+1’ K= (H I:)k+1H +R k+1)

f c . .
P.. is the covariance matrix of forecast errors



The ensemblar—algorithm

Specify an ensemble of initial fields

Xn(to) :X(to) +AX?11 n:l ’ '1Na
where «» is the vector number in the ensemble and

AX’ is a vector of N random error fields with covariarh?ée

n

With these initial fields, we calculate N estimatesdiews:

X, () = M (Xo(t)) 11,80 +PoH TRTE(YS, —H(M (X ft )+ {t ).



The ensemblar—algorithm

Let a “true” quantity satisfy the equation

X' (L) =M (x' (t)),
X'(t,) = X,.

The ensemble of estimation errors i8x ™ =x'(t,,,) =X .(t,.,)

and since the “true” quantity is unknown, we assume
that the estimation errors are close to deviatioms friean values

dxﬁﬂ = Xn(tk+1) —X n(t k+1)

where

1 N
X(t,.,) DNan(tkﬂ).
n=1



The ensemblar—algorithm

Then dXﬁ+l satisfies the following relation:

dx, " = M (X, (t,)) +1,(t) =M (X (t ) =P H "R (HM(x (t ) +n (t))-
H (M (x,(t)) +m,(t))).

Estimating B,,, by the following formula

Pk+1 — dxl:]+1 (dxl:]+1)T - Nl 1ZN:dx‘§,+1(dX |r<]+1)T |
T dn=

we have a variant of the ensemble Kalman filter.

With this formula forP, .,  we obtain a system of equations for

ka+l

n



The ensemblar—algorithm

letDbean L XN matrix with vector columns

{dx!" n=1,...,N}

We denote f“=M(x,(t))+n.(t)-M(x (t)

let F be a matrix with columns {f, n=1,..., N}

Formula can be written in matrix form as follaws

DT — FT _HTDT,
where JT isthe (NxN) matrix with elements
()}, = —— (ox“) HTR A (H (M (x () +1 (t )) - AV (X {E )+ D),

N-1



The ensemblar—algorithm

Let  fan SH(M(X,(t)) +1,(t)) —H(M(x (t)) +n (t )
F a matrix with columns {f¥, n=1,..., N}

Formula forpy Is equivalent to the matrix equalit

n = 4 D'H'R'F.

From formula foiD, we obtain the following relations:

(1+I')D" =F", D' =(I +II")*FT,

From this we obtain for the matridl

(BRI :ﬁFTH R'F.



The ensemblar—algorithm

Let C -1 FTHTRE. From equation foll we obtain the relation

(M"+0,9Y=C+0,25%
For taking the root fronfC + 0,29 ) the matrix must be positive definite. In this gase

1
' =(C+0,29 f - 0,5

It is evident that IT=0. If the operator H is linear, F=HF, and the matri

o= ﬁFTHTR‘lHF is symmetric and positive definite. In this cabe, problem of takg the

root from the matrix is solved easily and, henogjdtermine the matriXl it is better to uséhe
linearized observation opera H .



o~ WDk

The ensemblar—algorithm

Thus, the ensembfealgorithm consists of the following steps:

. Specify the(LxN) matrixF;

. calculate thanx N) matrix C;

. calculate thenxN) matrix ir;

. calculate theLxN) matrix D;

. calculate the ensemble of estimates

Xf]k+1)T = F2T +H'2|'DT’
() =M, (1)) +m,(t,),
1

(M3)] =< (o) HIRZA(Y}, ~ H(M () + n)).




The ensemblar—algorithm

It should be noted that the formulas of the ensemilalgorithm presente
In this section do not reproduce those of the makKalman filter if y° is
considered without additional perturbations. Intfé#can ensemble elemeat the
analysis step has the form
X3 =5+ PHR(y’ = Hxp)

(the superscriptd” denotes the variables obtained at the analygs abtel b”
denotes the variables obtained at the forecas), stepanalysis error satisfies the
equation

dx? =dx; —P*H 'R™Hdx/,
and the error covariance of the ensemble algonshm

P.=(I -KH)P,(I —-KH)".
This does not correspond to the equation for ther eovariances of the Kalman
filter (Jazwinsky, 197)

Jazwinski A.H. 1970Stochastic processes and filtering theoAcademic Press:
New York.



The ensemblar—algorithm

With “perturbed” observations

50 —\,0 0
ytk _yt,< te,

and similar calculations, we obtain formulas thahcide with formulas -5) anc

a matrixC that differs from the matrix obtained above:

C :ﬁ-FTHTR_l(HF'l'E) = C1+C2.

Here E Is the matrix whose columns are equal to the vegtol' he matrixc,is

1 _
C, = { H(Mdx; —n, (t) '} R ek

Under the assumption of space ergodicity, the féanfor C, Is an estima

of the covarianc
J-1

cov{[H(Mdx; —n (t)LL(Riin )} X —-



The ensemblar—algorithm

One can see from formula for the elements of matrixhat this matrix i
the same for alyrid nodes at which the analysis is made. Owinthi® propert
the algorithm can be easily used for each grid mavder a group of nodestep:
1) - 4) of the ensemble-algorithm can be made in the same way as in thal
Ensemble Transform Kalman Filter (LETKF) algorith(Rlunt et al., 200"
independently of grid nodes using the subvecypr, and the correspondi

eigenmatrice$i andR for each grid node.

At step 5), the calculations must be made for atl godes simultaneous
To calculatex™ at a grid node, the matrii is calculated with the matriceés

andR corresponding tthis nodeand the subvectoy; .



Extension of the ensemblgr-algorithm

Let the “true” valuex, satisfy the equation
X (tea) = M (X, (t)),
X, (t;) =X,
Consider an ensemble of initial fie
X, (t) = %, (o) + AXp
an ensemble of “model noisq (t.), and data of observations
Yo, = H(X(t)) + &,
wheree. are random observation errors with zero mean addr@ance matrixR, .

The ensemble of estimates has the following form
Xo(taa) = MOGED) +1,(8) +PH TR (Y, ~HM(X (t)) +n (t ).



Extension of the ensemblgr-algorithm

Determine the ensemble of estimation el dx‘*=x(t.,)-x.(t.). The error

satisly the following equation:
dx, " = M (x,(t,)) = M (X,(t,)) = (t) -
PeaH "R "(H(M (X, (t,)) + 8, — H(M (X (t) +1 (t))).
Conside the case when linearized operatersand H are used to calculate -

errol.
ank+l = M ank - 1]n(tk) - l:)k+1H TR_l(H (M dX nk - 'l n(t k)) + Sok)'

After calculations similar to those in the previ@estion omitting the superscript
“K"), we obtain:

DT — (I +HT)_1FT,

n =(C+0,29 y2- 0,5

C :ﬁFTHTR_l(HF'l'E) — Cl +C2.



Extension of the ensemblgr-algorithm

Matrix C must be such that the square root fr@@+ 0,23 ) can be taken. Fo€, 0O, C

Is symmetric and positive. Therefore, the squa an be calculated bgetermining th
eigenvectors and eigennumbergfThe matrixC,, under the assumption of space ergodi

IS an estimate of the covariance
_ J-1
cov[H(Mdx; = (L)L (Riceter ]} *~—

And the elements o€, can be considered close to zero.

This variant of the ensembitealgorithm can be implemented in the following form
X(k+l)T — F2T +H;DT,
(), =M (X, (t)) +m(t),
n 1 +\T - n n
(1), = (@xn") HREG(YL, ~HM () +n)).
If (M(x})—-M(x,)) is assumed to be approximately equalb(x;)-M (X)), dx;,, can b
calculated without the linearized operaidr.



Extension of the ensemblgr-algorithm

Consider a more general variant with nonzero elemén®, pand solve the following nonline
matrix equation foD" :
(1+I")D" =F",
where
1

n' =——D'H'R'F,
N-1

F is the matrix with columngéf*, n=1,..., N}, f“=Mdx* -n (t,) and
F is the matrix with columnéf’, n=1,..., N}, fX =y} —H(M(x,(t).
The nonlinear equation can be solved by the folhgwierative method:

(1+0)(DT) " =FT,

o :L(DT)' H'RE,
N-1

wherel is the iteration number. The iterative procesd woinverge ifH(I +HT)H IS boundec
since in this case the convergence conditions oftbl@s method are satisfied.



Extension of the ensemblgr-algorithm

In the algorithm that is proposed here; x, (wherex, is a “true” value), but nok—X is use
as the estimation error, which makes the algorithmser to the extended Kalman filtén. this
case, dxH — 0 means that the error but not the deviation frdgimean” decreases.

It should be noted that this algorithm can be imm@ated independently of grid no
from some subdomains; in this case, the subveg[‘i[ﬂqr and the corresponding eigenmatriees
andR must be useth each subdomailo decrease the “false” covariances at large dist
the covarianceP,,,H' can be multiplied by a matrix functio®(p) >0, wherep is the distanc

between the grid node and the observations. HerentitrixC has the following form:

C :ﬁFTHT(D(p)R_l(HF +E)




A comparison of the ensembler-algorithm
and LETKF algorithm

The analysis step of the proposed algorithm caepesented in the

following form:
X! =x] +P*H R (y° +&] - Hx.),

pr=_1_ Dx_Dx.',
N-1

dx} =dx{ —P*H 'R™Hdx/+P™H R,



A comparison of the ensembie-algorithm and
LETKF algorithm

In LETKF, the analysis step is made only for enseralverage values (Hunt et al., 2007):
X, =X, +P*H'R™(y’ - HX,),
and
PH'R*=PH"(HPH'+R)™,

1
Pb = mDXbDXbT’

Dx, is found from the conditiof®, = Dx,ADx,' = 1 px Dx . The matrixA has the

following form (Hunt et al., 2007):
[(N-1)l + (HDx,) R™(HDx,)] .

Hunt B.R., Kostelich E.J., Szunyogh I. 2007. Eéfid data assimilation for statiotemporal
chaos: A local ensemble transform Kalman filt&nysica D230: 112-126.



A comparison of the ensembie-algorithm and
LETKF algorithm

The ensemble element after the analysis step irKEEEGan be written as

X! =x] +K(y° —Hx]) + (I —KH)(X,—x}) -KgJ+dx ",
K =P*H'R™

That is, the equation for the ensemble elemenin LETKF differs from equation fok; in the
ensemblet-algorithm by the termx’ = (I —KH)(X, —x;) —Kg; +dx_ in the right-hand side.
In this case, we have

X' =0,xX'" =0.

It should be noted that the matric®$ in this equations are different. Since in the ense

_ N _
algorithms () D%Z(D;[1 , X' =0 with a large error, since this estimate convea\m(}/\/ﬁ).

n=1



Numerical experiments

To assess the possibilities of practical implemigmaof the proposedlgorithm, a series
numerical experiments has been performed with Bhednlinear Burgers equation:

ou, u_ ou_ o 1 0°u

ot asing, 04  (asind,f 0A*
The equation was solved for a circle of latitugle= 45" with periodic boundary conditions. T
equation was solved by a Leap Frog/DuFort-Frankéketdifference scheme on the basis o

example presented in (Kalnay E., 2002). The salutvas sought for grid nodes witkh =25,

and the time step wast =1hour. The parametar was taken to be 0,001. The initial data \
taken as a large-scale wave,

u(A) =U,sinA),
U, =10ms-1.

Kalnay E. 2002Atmospheric Modeling, Data Assimilation and Preallity. Cambridge Univ.
Press.



Numerical experiments

The observational data were produced by using dneesmodel (“twin"type experiments).
prediction for 48 hours was calculated with obseoveal datain a band of 36 grid nodes fr
numberi, to numberi, assumed to be available every 36 hours:

ntime

= ~1)x 36,

I, = (i, —1) + 36,
wherentime is the time step number (6, 12, 18, etc.).

As is customary in numerical experiments with madkgh, a “true” value was simulated by
same model, and the function

U (A) = u(d) + ¢,

was taken as initial condition far'. Here {, =o N (01), o, =1, andN(0,1)is a random

guantity normally distributed with zero mean and wariance. The observational data were
specified by adding a random observation eererg /N (01), g, = 0,1 to the “true” value

U\, 1)



Numerical experiments

To implement the ensembte-algorithm and the LETKF algorithm, an ensembleNomitial
fields was specified,

u =u’+Ay°.
Here u® was considered to be a preliminary estimate @u’ = o, N(0,1), o, =1.

N predictions with assimilation were calculated gdiimeN initial fields, and the sougHor field
was estimated at each time step by the formula

As an estimate of the result, the root-mean-sqdexgation of U from u' ("truth") was use
The numerical experiments were madeNa25, whereN is the number of ensemble eleme

The covariance matrix of forecast errors at théahtime was specified aB, =o,°l , andthe
covariance matrix of observation errors,Rs g’l , wherel is the unit matrixQ=0.



Numerical experiments

Since the covariances were described with a limtenber of ensemble eleme
some changes were introduced at the analysis stepniy locally, at grid nods
located close to observations, but practicallyhim éntire domain. In the first sel
of numerical experimentsthe corrections were made in the domain w
observations were specified. In this case, all t@ataach grid node were used.

The following numerical experiments were made:

1. Data assimilation with the ensemhd@lgorithm (Section 2 formulas);

2. Data assimilation with the extendedalgorithm in which the error
considered as a deviation from a “truth” (SectidorBnulas);

3. Data assimilation with the LETKF algoritt



Numerical experiments

Figure 1 shows the results of this series of experimelet®,rms_0is the root-
mean-square error without assimilation, amg_1 rms_2,andrms_3are the
forecast errors obtained in experiments 1, 2, and 3, resggcOne can see
from this figure that the forecast erramss_1 rms_2,andrms_3are similar in
behavior

——rms_0
—ms_1
—o—rms_2

—A—Ims_3

0 T T T T T T T !
0 6 12 18 24 30 36 42 48

time (hour)




Numerical experiments

In a second series of experiments, a variant of the algwitmplementedior each gri
node separately was considered. In this case, the dathefkthtnode were chosen from
interval (k-3,k+3). For each grid node, specific matricesandR, were formed. Asan be see¢
from equations, to implement the ensemblggorithmlocally, it is necessary first to calcul
the matrix DH, and then calculate the ensemble of forecas$te following numeric:
experiments were made:

1. Data assimilation with the extendedalgorithm in which the error is considered ¢
deviation from a “truth”;
2. Data assimilation with the LETKF algorithm.



Numerical experiments

Figure 2 shows the results of this series of expents. Heretms_0Ois
the root-mean-square error without assimilatiord ams_landrms_:
are the forecast errors obtained in experimentsdl2arespectively.
One can see from this figure that the fore@asdr in the second ser
of experiments turned out to be smaller than thahe first series, al
again the forecast errors with assimilatiare practically similar i
behavio.

——rms_0
—o—rms_1
o—Ims_2

time (hour)




Conclusions

A suboptimal algorithm of data assimilation basadaoensemble approa
was proposed in the reporfhe algorithm is based on the introduction ¢
equation for the estimation error and a solutiothts equation is sought 1
to estimate the covariances.

The major arithmetic operations are made with roa@sricomparable to t
ensemble in size; the algorithm is close to the KETethod in the numb
of arithmetic operations.

The algorithm allows an extension when the estiomaérror is interprete
as a deviation from a “truth” but not from a mears, ia all ensemb
assimilation algorithms.

The algorithm can be implemented locally for indival grid nodes or
group of nodes. The algorithm formulas can be gdizexd by multiplying
the covariancesf the estimation error by a function of the disetetwee
an observation point and a grid node. This deceedhe impact ¢
unrealistically high correlations that occur whée size of the ensemble
small at large distanct
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