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IntroductionIntroduction

1. The Kalman filter is one of the most popular approaches to solving 
problems of data assimilation.

2. The so-called ensemble approach is a leading method in the use of 
Kalman filter data assimilation. It allows one to calculate the 
estimation error covariance matrices for nonlinear prognostic 
models. 

3. In the report, an efficient algorithm of observational data 
assimilation for nonlinear models with an ensemble of forecasts is 
proposed to evaluate the estimation error covariances. The method 
is based on ideas taken from automatic control theory

4. The ensemble Kalman filter, much like the conventional Kalman
filter, is an algorithm difficult to implement technically, since it 
involves operations with high-order matrices. 
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5. The operation count for the ensemble π-algorithm is near that 
for the Local Ensemble Transform Kalman Filter (LETKF) 
(Hunt et al., 2007; Szunyogh et al., 2008). However, the 
ensemble π-algorithm formulas are different from LETKF 
formulas and obtained in a different way. 

6.  The ensemble Kalman filter differs greatly from the classical   
Kalman filter in that the forecast error covariances are 
estimated by deviations of the ensemble elements from mean 
values. The algorithm proposed in this report can be extended 
to estimate the covariances by deviations of the ensemble 
elements from “true” values.



Plan of reportPlan of report

1. The ensemble π–algorithm formulas for nonlinear model and 
data operators.

2. An extension of the ensemble π-algorithm in which the 
covariance matrices are estimated by an ensemble of errors 
(deviations of the ensemble elements from “true” values).

3. A comparative analysis of the ensemble π-algorithm and 
LETKF formulas.

4. The results of numerical experiments on model data 
assimilation with the 1D Burgers equation.

5. Conclusions.
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Let’s 

1( )f
kt +x 1+kt

( )a
ktx kt

( )ktη kQ

is the  vector of predicted quantities at time

is the vector of values obtained after the analysis step at time

M is the model operator

is Gaussian white noise with covariance matrix 

The forecast step can be written as

1
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k k k( t ) M( ( t )) ( t )+ = +x x η
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The analysis step is
1 0( ) ( ) ( ( ( ))),

k

a f a T f
k k k k t kt t H t−= + −x x P H R y x

a
kP

kR

H

0

kt
y

kt

is the co variance matrix of analysis errors, 

H is an operator (generally nonlinear) which transforms values at grid nodes 
to values at observation points, 

is a linearized operator

is the observation vector at time 

is the covariance matrix of observation errors, 
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Write the algorithm in the following equivalent form:

1 0
1 1 1( ) ( ( )) ( ) ( ( ( ( )) ( ))),
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where 

is the covariance matrix of forecast errors
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Specify an ensemble of initial fields

0
0 0( ) ( ) , 1, , ,n nt t n N= + =x x ∆x L

0
n∆x 0P

where «n» is the vector number in the ensemble and 

is a vector of N random error fields with covariance 

With these initial fields, we calculate N estimates as follows:

1
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Let a “true” quantity  satisfy the equation

1

0 0
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The ensemble of estimation errors is 1
1 1( ) ( )k t

n k n kt t+
+ += −∆x x x

and since the “true” quantity is unknown, we assume
that the estimation errors are close to deviations from mean values

1
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Then               satisfies the following relation:
1k

n
+dx

1 1
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Estimating 1k+P by the following formula 
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we have a variant of the ensemble Kalman filter.

With this formula for 1k +P we obtain a system of equations for

1k
n

+dx
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Let D be an L N× matrix with vector columns 

1{ , 1, , }k
n n N+ =dx K

( ( )) ( ) ( ( ))k
n n k n k n kM t t M t= + −f x η xWe denote

let F be a matrix with columns { , 1, , }k
n n N=f K

Formula can be written in matrix form as follows:

,T T T T= −D F Π D

where Π is the )( NN × matrix with elements
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Let ( ( ( )) ( )) ( ( ( )) ( ))k
n n k n k n k n kH M t t H M t t= + − +f x η x η%

F% a matrix with columns { , 1, , }k
n n N=f% K

Formula for      is equivalent to the matrix equalityΠ

11
.

1
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N
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−
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From formula for D, we obtain the following relations:

( ) ,T T T+ =I Π D F 1( ) ,T T T−= +D I Π F
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N
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Let 11

1
T T

N
−=

−
C F H R F% . From equation for Π  we obtain the relation  

2( 0,5 ) 0,25 .T + = +Π I C I  
For taking the root from ( 0,25 )+C I  the matrix must be positive definite. In this case,  

                                                    
1
2( 0,25 ) 0,5 .T = + −Π C I I                                                        

It is evident that 0≥Π . If the operator H  is linear, =F HF% , and the matrix
11

1
T T

N
−=

−
C F H R HF  is symmetric and positive definite. In this case, the problem of taking the 

root from the matrix is solved easily and, hence, to determine the matrix Π  it is better to use the
linearized observation operator H . 
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Thus, the ensemble π-algorithm consists of the following steps: 
 

1. specify the ( )L N×  matrix F; 
2. calculate the ( )N N×  matrix С; 
3. calculate the ( )N N×  matrix Π ; 
4. calculate the ( )L N× matrix D; 
5. calculate the ensemble of estimates 

( 1)
2 2 ,k T T T T

n
+ = +X F Π D  

( )2 ( ( )) ( ),T
n k n kn

M t t= +F x η  

( ) ( )
1

1 1 0
2 1

1
( ( ( ) ))).

1 k

n TT k T n n
m k t k km

H M
N +

+ −
+= − +

−
Π dx H R y x η  
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It should be noted that the formulas of the ensemble π-algorithm presented 
in this section do not reproduce those of the classical Kalman filter if 0y  is 
considered without additional perturbations. In fact, if an ensemble element at the 
analysis step has the form 

1 0( ),n n a T n
a b b

−= + −x x P H R y Hx  
(the superscript “а”  denotes the variables obtained at the analysis step, and “b” 
denotes the variables obtained at the forecast step), the analysis error satisfies the 
equation 

1n n a T n
a b b

−= −dx dx P H R Hdx , 
and the error covariance of the ensemble algorithm is 

( ) ( )T
a b= − −P I KH P I KH . 

This does not correspond to the equation for the error covariances of the Kalman 
filter (Jazwinsky, 1970) 

Jazwinski A.H. 1970. Stochastic processes and filtering theory.  Academic Press: 
New York.
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With “perturbed” observations  
0 0 0,
k kt t k= +y y ε%  

 
and similar calculations, we obtain formulas that coincide with formulas 1)-5) and 
a matrix С that differs from the matrix obtained above: 

1
1 2

1
( ) .

1
T T

N
−= + = +

−
C F H R HF Ε C C  

Here Ε  is the matrix whose columns are equal to the vector 0
kε . The matrix 2C is  

{ } 1 0
2 1

1
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1
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N
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+= −
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 Under the assumption of space ergodicity, the formula for 2C  is an estimate
of the covariance 
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1
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H Mdx η R ε
k
n n k k k

J
t

N
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One can see from formula for the elements of matrix Π  that this matrix is 
the same for all grid nodes at which the analysis is made. Owing to this property,
the algorithm can be easily used for each grid node or for a group of nodes. Steps 
1) - 4) of the ensemble π-algorithm can be made in the same way as in the Local 
Ensemble Transform Kalman Filter (LETKF) algorithm (Hunt et al., 2007) 
independently of grid nodes using the subvector 

1

0
,+kt ly  and the corresponding 

eigenmatrices H and R for each grid node.  
 

At step 5), the calculations must be made for all grid nodes simultaneously. 
To calculate ( 1)k T

n
+X  at a grid node, the matrix 2

T
Π  is calculated with the matrices H

and R corresponding to this node and the subvector 
1

0
,+kt ly . 
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Let the “true” value tx  satisfy the equation 
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Consider an ensemble of initial fields 
0

0 0( ) ( )n t nt t= +x x ∆x , 
an ensemble of “model noise” ( )n ktη , and data of observations 

0 0( ( )) ,
kt t k kH t= +y x ε  

where 0
kε  are random observation errors with zero mean and covariance matrix kR . 

 The ensemble of estimates has the following form: 
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Determine the ensemble of estimation errors 1
1 1( ) ( )k

n t k n kt t+
+ += −dx x x . The errors 

satisfy the following equation: 
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Consider the case when linearized operators M  and H  are used to calculate the 
error: 
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After calculations similar to those in the previous section (omitting the superscript 
“k”), we obtain: 
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Matrix С must be such that the square root from ( 0,25 )+C I  can be taken. For 2 ≅C 0 , С

is symmetric and positive. Therefore, the square root can be calculated by determining the 
eigenvectors and eigennumbers of С. The matrix 2C , under the assumption of space ergodicity, 

is an estimate of the covariance 

( )1 0
1 1

1
cov{[ ( ( ))],[ ]}
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−
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And the elements of 2C  can be considered close to zero. 

 
 This variant of the ensemble π-algorithm can be implemented in the following form: 

( 1)
2 2 ,k T T T T
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If ( ( ) ( ))n t
k kM M−x x  is assumed to be approximately equal to ( ( ) ( ))n

k kM M−x x , 1
n
k+dx  can be 

calculated without the linearized operator M . 
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Consider a more general variant with nonzero elements of 2C , and solve the following nonlinear 

matrix equation for TD : 
                                                                   T T T( ) ,+ =I Π D F                                                     
where       

11
,

1
T T T

N
−=

−
Π D H R F%  

 F is the matrix with columns { , 1, , }k
n n N=f K , ( )k k

n n n kt= −f Mdx η  and  

F%  is the matrix with columns { , 1, , }k
n n N=f% K , 

1

0 ( ( ( ))
k

k
n t n kH M t

+
= −f y x% .  

The nonlinear equation can be solved by the following iterative method: 

                                                           ( ) 1
( ) ,

lT T T+
+ =I Π D F                                                        

                                                   ( ) 11
,

1

lT T T

N
−=

−
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where l is the iteration number. The iterative process will converge if ( )T+I Π  is bounded, 

since in this case the convergence conditions of Newton's method are satisfied. 
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In the algorithm that is proposed here, t−x x  (where tx  is a “true” value), but not −x x  is used 

as the estimation error, which makes the algorithm closer to the extended Kalman filter. In this 
case, 0→dx  means that the error but not the deviation from a “mean” decreases.   

It should be noted that this algorithm can be implemented independently of grid nodes 
from some subdomains; in this case, the subvector 

1

0
,+kt ly  and the corresponding eigenmatrices H

and R must be used in each subdomain. To decrease the “false” covariances at large distances, 
the covariance 1

T
k+P H  can be multiplied by a matrix function ( ) 0>Φ ρ , where ρ  is the distance 

between the grid node and the observations. Here the matrix С has the following form: 
11

( ) ( ).
1

−= +
−

C F H Φ ρ R HF Ε
T T

N
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and LETKF algorithmand LETKF algorithm

The analysis step of the proposed algorithm can be represented in the 
following form: 

1 0
0( ),n n a T n n

a b b
−= + + −x x P H R y ε Hx  

1 1
0

1
,

1

.

a T
a a

n n a T n a T n
a b b

N
− −

=
−

= − +

P Dx Dx

dx dx P H R Hdx P H R ε
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In LETKF, the analysis step is made only for ensemble-average values (Hunt et al., 2007): 
1 0( ),a T

a b b
−= + −x x P H R y Hx  

and 
1 1( ) ,

1
,

1

T T T
a b b

T
b b bN

− −= +

=
−

P H R P H HP H R

P Dx Dx
 

aDx  is found from the condition 
1ˆ

1
T T

a b b a aN
= =

−
P Dx ADx Dx Dx . The matrix Â  has the 

following form (Hunt et al., 2007): 
11( 1) ( ) ( ) .T

b bN
−− − + I HDx R HDx  

Hunt B.R., Kostelich E.J.,  Szunyogh I. 2007. Efficient data assimilation for statiotemporal 
chaos: A local ensemble transform Kalman filter. Physica D. 230: 112-126. 
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The ensemble element after the analysis step in LETKF can be written as 
 

0
0

1

( ) ( )( ) ,

.

n n n n n n
a b b b b a

a T −

= + − + − − − +

=

x x K y Hx I KH x x Kε dx

K P H R
 

 
That is, the equation for the ensemble element n

ax  in LETKF differs from equation for nax  in the 

ensemble π-algorithm by the term 0( )( )n n n
b b a

′ = − − − +x I KH x x Kε dx  in the right-hand side. 
In this case, we have 

0, 0.T′ ′ ′= =x x x  
 
 

It should be noted that the matrices Pa  in this equations are different. Since in the ensemble 

algorithms 
1

1
( ) ( )

N

n
nN =

⋅ ≅ ⋅∑ , 0′ =x  with a large error, since this estimate converges as 1O
N

 
 
 

. 
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To assess the possibilities of practical implementation of the proposed algorithm, a series of 
numerical experiments has been performed with the 1D nonlinear Burgers equation:  

2

2 2
0 0

1
.

sin ( sin )

u u u u

t a a
α

θ λ θ λ
∂ ∂ ∂+ =
∂ ∂ ∂

 

The equation was solved for a circle of latitude o450 =θ  with periodic boundary conditions. The 
equation was solved by a Leap Frog/DuFort-Frankel finite-difference scheme on the basis of an 
example presented in (Kalnay E., 2002). The solution was sought for grid nodes with o52,=λ∆ , 
and the time step was 1=∆t hour. The parameter α  was taken to be 0,001. The initial data were 
taken as a large-scale wave,  

),sin()( 0 λ=λ Uu  

0 10 1U ms= − . 

Kalnay E. 2002. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univ. 
Press. 
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The observational data were produced by using the same model (“twin”-type experiments). A 
prediction for 48 hours was calculated with observational data in a band of 36 grid nodes from 
number 1i  to number 2i  assumed to be available every 36 hours: 

,36)1(

,36)1
6

(1

12

1

+−=

×−+=

ii

ntime
i

 

where ntime  is the time step number (6, 12, 18, etc.). 

As is customary in numerical experiments with model data, a “true” value was simulated by the 
same model, and the function 

0( ) ( )tu uλ λ ζ= +  

was taken as initial condition for tu . Here )1,0(0 Nfσ=ζ , 1fσ = , and N(0,1) is a random 

quantity normally distributed with zero mean and unit variance. The observational data were 
specified by adding a random observation error )1,0(0Nσ=ε , 0 0,1σ =  to the “true” value 

tu ( , t)λ  
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To implement the ensemble π–algorithm and the LETKF algorithm, an ensemble of N initial 
fields was specified, 

0 0 0= + ∆i iu u u . 

Here 0u  was considered to be a preliminary estimate of x, 0
i fu N(0,1),∆ = σ  1fσ = . 

N predictions with assimilation were calculated using the N initial fields, and the sought-for field 
was estimated at each time step by the formula 

N

i
i 1

1
u u .

N =

= ∑  

As an estimate of the result, the root-mean-square deviation of u  from tu  ("truth") was used. 
The numerical experiments were made for N=25, where N is the number of ensemble elements. 
The covariance matrix of forecast errors at the initial time was specified as 2

0 fσ=P I , and the 

covariance matrix of observation errors, as 2
0σ=R I , where I is the unit matrix, Q=0.  
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Since the covariances were described with a limited number of ensemble elements, 
some changes were introduced at the analysis step not only locally, at grid nodes 
located close to observations, but practically in the entire domain. In the first series 
of numerical experiments, the corrections were made in the domain where 
observations were specified. In this case, all data for each grid node were used.  
The following numerical experiments were made: 
 
 

1. Data assimilation with the ensemble π-algorithm (Section 2 formulas); 
2. Data assimilation with the extended π-algorithm in which the error is 

considered as a deviation from a “truth” (Section 3 formulas); 
3. Data assimilation with the LETKF algorithm 
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Figure 1 shows the results of this series of experiments. Here, rms_0 is the root-
mean-square error without assimilation, and rms_1, rms_2, and rms_3 are the 
forecast errors obtained in experiments 1, 2, and 3, respectively. One can see 
from this figure that the forecast errors rms_1, rms_2, and rms_3 are similar in 
behavior 
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In a second series of experiments, a variant of the algorithms implemented for each grid 
node separately was considered. In this case, the data for the kth node were chosen from the 
interval (k-3,k+3). For each grid node, specific matrices, H and R, were formed. As can be seen 
from equations, to implement the ensemble π-algorithm locally, it is necessary first to calculate 
the matrix DH, and then calculate the ensemble of forecasts. The following numerical 
experiments were made:  
1. Data assimilation with the extended π-algorithm in which the error is considered as a 

deviation from a “truth”; 
2. Data assimilation with the LETKF algorithm. 
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Figure 2 shows the results of this series of experiments. Here, rms_0 is 
the root-mean-square error without assimilation, and rms_1 and rms_2 
are the forecast errors obtained in experiments 1 and 2, respectively.  
One can see from this figure that the forecast error in the second series 
of experiments turned out to be smaller than that in the first series, and 
again the forecast errors with assimilation are practically similar in 
behavior.  



ConclusionsConclusions

• A suboptimal algorithm of data assimilation based on an ensemble approach 
was proposed in the report. The algorithm is based on the introduction of an 
equation for the estimation error and a solution to this equation is sought for 
to estimate the covariances. 

 
• The major arithmetic operations are made with matrices comparable to the 

ensemble in size; the algorithm is close to the LETKF method in the number 
of arithmetic operations. 

 
• The algorithm allows an extension when the estimation error is interpreted 

as a deviation from a “truth” but not from a mean, as in all ensemble 
assimilation algorithms. 

 
• The algorithm can be implemented locally for individual grid nodes or a 

group of nodes. The algorithm formulas can be generalized by multiplying 
the covariances of the estimation error by a function of the distance between 
an observation point and a grid node. This decreases the impact of 
unrealistically high correlations that occur when the size of the ensemble is 
small at large distances. 
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