WG1 Overview

Recent experiments with the nudging-type assimilation at DWD

- latent heat nudging (LHN)
 - use of extended radar composite
 - influence of spatial scale on scores
 - (Klaus Stephan)
- assimilation of ground-based GPS-derived integrated water vapour (IWV) (Karolin Eichler, Klaus Stephan, Christoph Schraff)
- the deficit of convective precip in 12-UTC runs: an issue of biases in the data assimilation
 - radiosonde humidity observation bias
 - temperature / pressure model bias(Klaus Stephan, Christoph Schraff)

LHN in COSMO-DE: use of extended radar composite

Use of extended composite of radar-derived surface precipitation in LHN

all experiments & plots by Klaus Stephan

+ NL composite (3 Sta.) + B composite (2 Sta.)

- + 10 French stations
- + 3 Swiss stations

limited quality control:

- + filtering of clutter
- + gross error detection (anomalous histogram)
- + blacklist (by comparison to satellite cloud)
- no radar beam height map for bright band detection

LHN in COSMO-DE: use of extended radar composite

Deutscher Wetterdienst Wetter und Klima aus einer Hand

number of grid points with value > threshold

in the neighbourhood

 $FFS = 1 - \frac{MSE}{MSE_{ref}}$

$$MSE = \overline{(O-F)^2}^{domain}$$

$$MSE_{ref} = \overline{O^2 + F^2}^{domain}$$

(MSE_{ref}: largest possible MSE)

CONTRACTOR OF CO

assimilation of ground-based GNSS-IWV: introduction

- GNSS = Global Navigation Satellite System
 - GPS (USA)
 - GLONASS (Russia)
 - GALILEO (EU)
 - ...
- delay of a signal due to atmospheric refractivity
- Slant Total Delay (STD, integrated value) : 'measured' by calculating the time difference between sending and receiving the signal
- Zenith Total Delay (ZTD) : by mapping TSD
- Zenith Wet Delay (ZWD) = ZTD ZDD, where Zenith Dry Delay computed using model pressure and temperature
- Integrated Water Vapour proportional to ZWD

Troller, M.R. (2004): 'GPS based Determination of the Integrated and Spatially Distributed Water Vapor in the Troposphere.'

Recent experiments with nudging at DWD Moscow, 6 September 2010

assimilation of ground-based GNSS-IWV: introduction

Deutscher Wetterdienst Wetter und Klima aus einer Hand

http://egvap.dmi.dk/

- certain processing centres are preferred over others in the redundancy check
- reject observed IWV < 2 kg/m²
- first guess check for IWV, threshold = 0.15 IWV_{saturat}; spatial consistency check
- conversion of IWV into humidity: scale model specific humidity profile to obtain retrieved specific humidity profile :

$$q_{v_{obs}} = q_{v_{mo}} \cdot \frac{IWV_{obs}^{(corr)}}{IWV_{mo}}$$

- if retrieved profile exceeds saturation at some levels, correct it iteratively
- determine quality weights at each model layer

assimilation of ground-based GNSS-IWV: the problem of late data availability

nearly no GNSS data used from last hour before analysis time and during 'nudgcast' \rightarrow forecast impact larger, if more data were used ?

assimilation of ground-based GNSS-IWV: results for summer period

phase lag of squall line: increased (only) very (!) slightly by GNSS

Recent experiments with nudging at DWD Moscow, 6 September 2010

assimilation of ground-based GNSS-IWV: results for summer period

rmse

relative humidity

+0h

+12h

202

no GNSS

opr GNSS

bias

Ϋ́ε

12 UTC

800

1000

500

800

1000 L D

0 UTC

- upper-air verification:
 - humidity conveyed upwards, moistening at 12 UTC
 - humidity rmse improved at + 12 h
 - neutral impact for wind + temperature
- Synop verification:
 - no negative impacts
 - bias slightly reduced
 for p_s, T_{2m}, T_{d, 2m}, dd_{10m}
- precipitation:
 - scores strongly improved during assimilation
 - scores moderately improved in forecast, could be significantly enhanced if GNSS data were available closer to real time
 - phase errors (lag) of fronts / convergence lines (only) very slightly increased

Q.

iżi

10

P#1

50

29,

winter period: 2 - 24 Jan. 2010, with ~ 10 days with low stratus expected: problems with IWV-nudging in cases of strong vertical humidity gradients \rightarrow examples **COSMO-DE** analyses 15 Jan 2010, 10 UTC reference (no GNSS) **GNSS** experiment

25

12.5

37.5

Recent experiments with nudging at DWD Moscow, 6 September 2010

christoph.schraff@dwd.de

75

[%]

62.5

50

low cloud cover

87.5

100

reference (no GNSS) **GNSS** experiment T2M(MODEL) - T2M(SYNOP)T2M(MODEL) - T2M(SYNOP)COSMO-DE analysis 5N minus Synop obs., 15 Jan, 10 UTC 3N 2-m temperature 29 000 000 38 $\mathcal{I} \cap$ 3 👝 5E Mean: -0.625226 Min: -6.77676 Max: 7.97235 Mean: -1.63202 Min: -7.142 Max: 6.92786 bias = -0.63 K; rmse = 1.7 K bias = -1.63 K; rmse = 2.4 K Recent experiments with nudging at DWD christoph.schraff@dwd.de Moscow, 6 September 2010

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Recent experiments with nudging at DWD Moscow, 6 September 2010

christoph.schraff@dwd.de

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Moscow, 6 September 2010

Moscow, 6 September 2010

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Recent experiments with nudging at DWD Moscow, 6 September 2010

christoph.schraff@dwd.de

Deutscher Wetterdienst Wetter und Klima aus einer Hand

assimilation of ground-based GNSS-IWV: impact on wintertime precipitation

24-hour precipitation sum for 25 Jan. 2010, 6 UTC

Recent experiments with nudging at DWD Moscow, 6 September 2010

24-hour precipitation sum for 3 Jan. 2010, 6 UTC

christoph.schraff@dwd.de

 \rightarrow refinement: no use of GNSS obs increments in levels with cloud ice

15 Jan, 10 UTC

original GNSS analysis

Recent experiments with nudging at DWD Moscow, 6 September 2010

christoph.schraff@dwd.de

assimilation of ground-based GNSS-IWV: summary

- summer: neutral to positive impact (humidity, precip), precip could be more improved if GNSS data were available sooner
- winter:
 - upper-air verification: neutral impact
 - Synop verification: slightly negative for total & low cloud, T_{2m}
 - negative impact on low stratus / excessive snowfall with original version
 - $\rightarrow\,$ revision: neglect GNSS obs increments in presence of cloud ice
 - $(\rightarrow$ reduced upward transport of humidity due to GNSS)
 - neutral impact on snowfall (and low stratus ?) with revised version
- \rightarrow further steps:
 - re-compute full winter and summer (!) test periods with revised version
 - probably need define appropriate criteria related to strong vertical gradients of humidity (temperature) where influence of GNSS is reduced / eliminated
 - try to get GNSS data closer to real time
 - monitoring / quality control issues (blacklisting)

influence of biases on COSMO-DE: status at last GM

Starting point: convection-permitting COSMO version as operational in summer 2007 strongly underestimated diurnal cycle of precipitation in convective conditions

 \rightarrow 'new PBL' (COSMO V4_8) : reduced turbulent mixing (opr. summer 09):

- reduced max. turbulent length scale (Blackadar length : 200 m \rightarrow 60 m)
- reduced subgrid cloud fraction in moist turbulence

Why do biases in the diurnal cycle of precipitation depend on the initial time of forecasts ?

Possible reasons for problems with 12-UTC runs:

- Latent Heat Nudging ? \rightarrow small impact on bias (except first ~ 3 hours)
- radiosonde humidity: daytime RS92 dry bias ?
- radiosonde / aircraft temperature, due to warm bias in model low troposphere ?

influence of biases on COSMO-DE: new results: neglect of T, p_s obs

Dry bias of Vaisala RS92 radiosonde: Neglect of humidity is not desirable

 \rightarrow bias correction, according to Miloshevich et al., 2009 (J. Geophys. Res.) :

- 'RH-BC solar': correct solar radiation error (dep. on solar elevation, p, RH_{obs}) (~ 7 - 10 % of RH_{obs} below 500 hPa, >>10 % above)
- 'RH-BC total': correct total error (dep. on pressure level p, RH_{obs}) (night: ~ -3 % of RH_{obs} below 500 hPa, > 0 % above)

influence of biases on COSMO-DE: bias correction: adjust to T, p_s model bias

'new PBL' leads to significant warm bias (of forecasts) in low troposphere at noon i.e. COSMO-DE needs excessive instability on a large scale to produce sufficient convective precip on its own

- temperature profile: radiosonde: linearly increasing to 0.8 K below 500 hPa aircraft: ~ constant 0.2 K below 500 hPa
- surface pressure: up to -0.8 hPa

influence of biases on COSMO-DE: bias correction: adjust to T, p_s model bias

should bias corrections be applied operationally ?

- humidity: desirable: corrects observation bias, slightly improves forecasts
 less compensating errors for tuning of model (physics)
 - \rightarrow option will be introduced in V4_X (autumn)
- temperature, surface pressure: not desirable, model improvement needed
 - → (accidental) experiment with 80 vertical levels and 'old PBL' has shown improved convective precipitation without introducing temperature bias
 - \rightarrow comprehensive testing of new set-up 'L65' with 65 vertical levels and possible additional model modifications:
 - re-increased max. turbulent length scale
 - 2-moment scheme for rain (better treatment of evaporation of falling precip)
 - mass conserving saturation adjustment
 - reduced min. diffusion coefficient
 - 3rd order vertical diffusion
 - (explicit humidity correction in turbulence)
 - new reference atmosphere, veget.-dep. albedo, aerosol climatology

